Preparation of Si quantum dots by phase transition with controlled annealing
Silicon quantum dots (Si-QDs) are excellent luminescent material due to its unique optoelectronic properties and have huge application potential in the field of photodetection. Recently, there has been much research interests in developing low-cost, facile and environmentally friendly methods to pre...
Saved in:
Published in | Nanotechnology Vol. 32; no. 41; pp. 415205 - 415210 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
08.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Silicon quantum dots (Si-QDs) are excellent luminescent material due to its unique optoelectronic properties and have huge application potential in the field of photodetection. Recently, there has been much research interests in developing low-cost, facile and environmentally friendly methods to prepare the nanomaterials in addition to yielding excellent performances. In this article, we developed a novel preparation method of producing Si-QDs film based on carbon-silicon composite. The film was synthesized by co-sputtering using magnetron sputtering technique and studied at different annealing temperatures. Upon annealing, the film was transformed from an amorphous state to a crystalline state leading to Si-QDs precipitation, which can be observed at a low temperature of 600 °C. A Si-QDs thin film/n-Si photodetector was then prepared and characterized. The device exhibited a high specific detection rate (D*) of 1.246 × 1012cm Hz1/2W-1under 940 nm (1.1 mW cm-2) infrared radiation at 5 V bias. It also demonstrated good responsiveness and stability.Silicon quantum dots (Si-QDs) are excellent luminescent material due to its unique optoelectronic properties and have huge application potential in the field of photodetection. Recently, there has been much research interests in developing low-cost, facile and environmentally friendly methods to prepare the nanomaterials in addition to yielding excellent performances. In this article, we developed a novel preparation method of producing Si-QDs film based on carbon-silicon composite. The film was synthesized by co-sputtering using magnetron sputtering technique and studied at different annealing temperatures. Upon annealing, the film was transformed from an amorphous state to a crystalline state leading to Si-QDs precipitation, which can be observed at a low temperature of 600 °C. A Si-QDs thin film/n-Si photodetector was then prepared and characterized. The device exhibited a high specific detection rate (D*) of 1.246 × 1012cm Hz1/2W-1under 940 nm (1.1 mW cm-2) infrared radiation at 5 V bias. It also demonstrated good responsiveness and stability. |
---|---|
Bibliography: | NANO-129269.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0957-4484 1361-6528 1361-6528 |
DOI: | 10.1088/1361-6528/ac1196 |