Investigation of electrical properties of nanostructured carbon films derived from block copolymers

Electrical properties of nanostructured carbon (ns-C) films fabricated by pyrolysis of PAN–b–PBA copolymers were investigated. Films having cylindrical morphology and pyrolyzed at 400, 500 and 600 °C were investigated. Both carbide forming (Zr, Ti) and non-carbide forming (Cu, Pt) metals spanning a...

Full description

Saved in:
Bibliographic Details
Published inSynthetic metals Vol. 159; no. 3; pp. 177 - 181
Main Authors Kulkarni, P., McCullough, L.A., Kowalewski, T., Porter, L.M.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.02.2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Electrical properties of nanostructured carbon (ns-C) films fabricated by pyrolysis of PAN–b–PBA copolymers were investigated. Films having cylindrical morphology and pyrolyzed at 400, 500 and 600 °C were investigated. Both carbide forming (Zr, Ti) and non-carbide forming (Cu, Pt) metals spanning a wide range of electron work functions (4.1–5.5 eV) formed ohmic contacts to the ns-C films in the as-deposited state. The conductivity of the ns-C films increased roughly three orders of magnitude for every 100 °C increase in the pyrolysis temperature. Hall-effect measurements showed that the films pyrolyzed at 600 °C were n-type with a majority carrier concentration and mobility of 5.8 × 10 18 cm −3 and 0.97 cm 2/V s, respectively. Current–voltage measurements as a function of temperature ( I– V– T) were performed on films pyrolyzed at 600 °C, whereas films pyrolyzed at 400 and 500 °C were too resistive for reliable resistivity–temperature and Hall-effect measurements. The resistivity as a function of temperature was analyzed by using the reduced activation energy method and was determined to follow variable-range hopping (VRH) mechanisms at and below room temperature. The data indicates a crossover from Efros–Shklovskii VRH [J. Phys. C 8, (1975) L49] to Mott VRH [J. Non-Cryst. Solids 1, (1968) 1] at temperatures above 100 K.
ISSN:0379-6779
1879-3290
DOI:10.1016/j.synthmet.2008.08.015