Wireless Powered Relaying Networks Under Imperfect Channel State Information: System Performance and Optimal Policy for Instantaneous Rate
In this investigation, we consider wireless powered relaying systems, where energy is scavenged by a relay via radio frequency (RF) signals. We explore hybrid time switching-based and power splitting-based relaying protocol (HTPSR) and compare performance of Amplify-and-Forward (AF) with Decode-and-...
Saved in:
Published in | Radioengineering Vol. 26; no. 3; pp. 869 - 877 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Spolecnost pro radioelektronicke inzenyrstvi
01.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this investigation, we consider wireless powered relaying systems, where energy is scavenged by a relay via radio frequency (RF) signals. We explore hybrid time switching-based and power splitting-based relaying protocol (HTPSR) and compare performance of Amplify-and-Forward (AF) with Decode-and-Forward (DF) scheme under imperfect channel state information (CSI). Most importantly, the instantaneous rate, achievable bit error rate (BER) are determined in the closed-form expressions under the impact of imperfect CSI. Through numerical analysis, we evaluate system insights via different parameters such as power splitting (PS) and time switching (TS) ratio of the considered HTPSR which affect outage performance and BER. It is noted that DF relaying networks outperform AF relaying networks. Besides that, the numerical results are given to prove the optimization problems of PS and TS ratio to obtain optimal instantaneous rate. |
---|---|
ISSN: | 1210-2512 |
DOI: | 10.13164/re.2017.0869 |