Current Limiting Control With Enhanced Dynamics of Grid-Forming Converters During Fault Conditions
With an increasing capacity in the converter-based generation to the modern power system, a growing demand for such systems to be more grid-friendly has emerged. Consequently, grid-forming converters have been proposed as a promising solution as they are compatible with the conventional synchronous-...
Saved in:
Published in | IEEE journal of emerging and selected topics in power electronics Vol. 8; no. 2; pp. 1062 - 1073 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | With an increasing capacity in the converter-based generation to the modern power system, a growing demand for such systems to be more grid-friendly has emerged. Consequently, grid-forming converters have been proposed as a promising solution as they are compatible with the conventional synchronous-machine-based power system. However, most research focuses on the grid-forming control during normal operating conditions without considering the fundamental distinction between a grid-forming converter and a synchronous machine when considering its short-circuit capability. The current limitation of grid-forming converters during fault conditions is not well described in the available literature and present solutions often aim to switch the control structure to a grid-following structure during the fault. Yet, for a future converter-based power system with no or little integration of synchronous machines, the converters need to preserve their voltage-mode characteristics and be robust toward weak-grid conditions. To address this issue, this article discusses the fundamental issue of grid-forming converter control during grid fault conditions and proposes a fault-mode controller which keeps the voltage-mode characteristics of the grid-forming structure while simultaneously limiting the converter currents to an admissible value. The proposed method is evaluated in a detailed simulation model and verified through an experimental test setup. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2168-6777 2168-6785 |
DOI: | 10.1109/JESTPE.2019.2931477 |