Ethylene-vinyl alcohol copolymer/gelatin/cellulose acetate bionic trilayer fibrous membrane for moisture-adjusting
An intelligent bionic trilayer fibrous membrane is developed via electrospinning for the moisture-adjusting of a storage space. The trilayer is composed of a hydrophobic inner layer of cellulose acetate (CA), a super hygroscopic intermediate layer of gelatin (GA) and a hydrophilic outer layer of eth...
Saved in:
Published in | Carbohydrate polymers Vol. 300; p. 120269 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An intelligent bionic trilayer fibrous membrane is developed via electrospinning for the moisture-adjusting of a storage space. The trilayer is composed of a hydrophobic inner layer of cellulose acetate (CA), a super hygroscopic intermediate layer of gelatin (GA) and a hydrophilic outer layer of ethylene-vinyl alcohol copolymer (EVOH). The hierarchical pore networks of EVOH/GA/CA (∼2.45/∼4.5/∼36.0 μm) and the asymmetry wettability endow the membrane with outstanding directional water transport capacity. Specifically, the membrane has an excellent accumulative one-way transport index (1293 %), a remarkable overall moisture management capacity (0.91) and a reasonably high water evaporation rate (0.59 g h−1). The target membrane can regulate the relative humidity (RH) from 75 % to 50 % without extra energy consumption, which is capable of extending the shelf-life of jerk beef by ∼100 % under surrounding temperature of 25 °C and humidity of 75 % RH.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0144-8617 1879-1344 |
DOI: | 10.1016/j.carbpol.2022.120269 |