Sewage sludge ash contaminated with radiocesium: Solidification with alkaline-reacted metakaolinite (geopolymer) and Portland cement

This study contributes toward developing measures for the disposal of radiocesium-contaminated sewage sludge ash (SSA). Here, we prepared two types of solidified bodies containing 30 wt% radiocesium-bearing SSA. The material used for the two solidified bodies were alkaline-reacted metakaolinite (geo...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 416; p. 125965
Main Authors Kozai, Naofumi, Sato, Junya, Osugi, Takeshi, Shimoyama, Iwao, Sekine, Yurina, Sakamoto, Fuminori, Ohnuki, Toshihiko
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study contributes toward developing measures for the disposal of radiocesium-contaminated sewage sludge ash (SSA). Here, we prepared two types of solidified bodies containing 30 wt% radiocesium-bearing SSA. The material used for the two solidified bodies were alkaline-reacted metakaolinite (geopolymer) and ordinary Portland cement (OPC). Cement has been used for solidification of low-level radioactive wastes, and geopolymer is a candidate of cement alternative materials. The characteristics of these solidified bodies were investigated by various aspects including mechanical strength, transformation of SSA components during solidification, and radiocesium confinement ability by leaching test. The compressive strength of geopolymer- and OPC-solidified bodies at 30 wt% SSA content was more than 40 MPa. After static leaching test at 60 °C, 137Cs was hardly leached out from the geopolymer-solidified bodies containing SSA at 30 wt% to ultrapure water (<0.1%), whereas more than 30% 137Cs was leached from the OPC-solidified bodies containing SSA at 30 wt% even though only ~9% of 137Cs in the SSA is soluble. These results strongly indicate that geopolymer is far superior to OPC for solidifying radiocesium-bearing SSA. [Display omitted] •Sewage sludge ash (SSA) was solidified in geopolymer (GP) and cement (OPC).•SSA was partly amorphized during solidification process of GP and OPC.•The radiocesium (Cs) in SSA can be solubilized by the amorphization.•≤1% of the Cs in SSA was leached from GP, while >30% was leached from OPC.•GP is superior to OPC for solidifying Cs-bearing SSA.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2021.125965