Energy Efficient User Clustering, Hybrid Precoding and Power Optimization in Terahertz MIMO-NOMA Systems
Terahertz (THz) band communication has been widely studied to meet the future demand for ultra-high capacity. In addition, multi-input multi-output (MIMO) technique and non-orthogonal multiple access (NOMA) technique with multi-antenna also enable the network to carry more users and provide multiple...
Saved in:
Published in | IEEE journal on selected areas in communications Vol. 38; no. 9; pp. 2074 - 2085 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Terahertz (THz) band communication has been widely studied to meet the future demand for ultra-high capacity. In addition, multi-input multi-output (MIMO) technique and non-orthogonal multiple access (NOMA) technique with multi-antenna also enable the network to carry more users and provide multiplexing gain. In this paper, we study the maximization of energy efficiency (EE) problem in THz-NOMA-MIMO systems for the first time. And the original optimization problem is divided into user clustering, hybrid precoding and power optimization. Based on channel correlation characteristics, a fast convergence scheme for user clustering in THz-NOMA-MIMO system using enhanced K-means machine learning algorithm is proposed. Considering the power consumption and implementation complexity, the hybrid precoding scheme based on the sub-connection structure is adopted. Considering the fronthaul link capacity constraint, we design a distributed alternating direction method of multipliers (ADMM) algorithm for power allocation to maximize the EE of THz-NOMA cache-enabled system with imperfect successive interference cancellation (SIC). The simulation results show that the proposed user clustering scheme can achieve faster convergence and higher EE, the design of the hybrid precoding of the sub-connection structure can achieve lower power consumption and power optimization can achieve a higher EE for the THz cache-enabled network. |
---|---|
ISSN: | 0733-8716 1558-0008 |
DOI: | 10.1109/JSAC.2020.3000888 |