A High-Gain Circularly Polarized Antenna Using Zero-Index Metamaterial

In this letter, a novel high-gain circularly polarized (CP) antenna based on the zero-index metamaterial (ZIM) is presented. A square ring with two asymmetrical splits is used as a unit cell to achieve high gain and circular polarization. The 9 × 9 periodic array unit cells act as an aperture effici...

Full description

Saved in:
Bibliographic Details
Published inIEEE antennas and wireless propagation letters Vol. 18; no. 6; pp. 1129 - 1133
Main Authors Rajanna, Puneeth Kumar Tharehalli, Rudramuni, Karthik, Kandasamy, Krishnamoorthy
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this letter, a novel high-gain circularly polarized (CP) antenna based on the zero-index metamaterial (ZIM) is presented. A square ring with two asymmetrical splits is used as a unit cell to achieve high gain and circular polarization. The 9 × 9 periodic array unit cells act as an aperture efficient focusing metasurface lens and polarization converter for a primary source antenna. The focusing effect of the ZIM enhances the gain of the microstrip patch antenna placed above it by an amount of 5-6 dB. Also, the ZIM converts the linearly polarized wave emitted by the patch antenna into circularly polarized waves. The circular polarization is achieved by optimizing the two split gaps on the ring of the unit cell, which gives two orthogonal polarizations with the required phase. The proposed design is fabricated and verified experimentally. The prototype has measured impedance bandwidth from 7.04 to 7.68 GHz. The 3 dB axial ratio is achieved from 7.11 to 7.56 GHz, with a peak gain of 12.31 dBic at 7.45 GHz. The gain of around 11.5 dBic is achieved over the entire CP bandwidth with a good cross-polarization level.
ISSN:1536-1225
1548-5757
DOI:10.1109/LAWP.2019.2910805