Bioeconomic modelling of compensatory growth for grass-based dairy calf-to-beef production systems
Feed makes up c. 0·7 of total variable costs on Irish beef farms. A period of reduced growth (caused by nutritional restriction) followed by a period of accelerated growth (compensatory growth) can be used to take advantage of lower cost feedstuffs (grazed grass) during the grazing season. The Grang...
Saved in:
Published in | The Journal of agricultural science Vol. 152; no. 5; pp. 805 - 816 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.10.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Feed makes up c. 0·7 of total variable costs on Irish beef farms. A period of reduced growth (caused by nutritional restriction) followed by a period of accelerated growth (compensatory growth) can be used to take advantage of lower cost feedstuffs (grazed grass) during the grazing season. The Grange Dairy Beef Systems Model (GDBSM) was modified to capture more accurately the implications of compensatory growth and, thus, the energy demand of beef cattle was partitioned into energy required for maintenance and energy required for growth. For the current study, three production systems were evaluated where the male progeny of dairy cows were finished as steers at 24 (S24), 28 (S28) and 30 (S30) months of age. Three different live weight gains (RESLWG; 0·4, 0·6 and 0·8 kg/day), reflecting different levels of nutritional restriction, were simulated during the first winter feeding period (November–February) for S24 and during the second winter feeding period for S28 and S30. This allowed the effect of different live weight gains during a nutritional restriction period on farm profitability to be determined. Results indicated that for S24 the most profitable RESLWG was 0·6 kg/day. However, for S28 and S30 the most profitable systems were RESLWG of 0·4 kg/day. Financial performance of all systems was very sensitive to variation in beef carcass and calf prices but less sensitive to concentrate and fertilizer price variation. Furthermore, sensitivity analysis showed that the level of maintenance energy reduction and the duration of this reduction had a modest impact on results. The GDBSM is demonstrated as a quantitative framework for simulating compensatory growth and determining its effects on the profitability of dairy calf-to-beef production systems. |
---|---|
Bibliography: | http://dx.doi.org/10.1017/S0021859613000531 |
ISSN: | 0021-8596 1469-5146 1469-5146 |
DOI: | 10.1017/S0021859613000531 |