Primary Design and Analysis of Feeder for ITER Poloidal Field
An electromagnetic (EM) analytic model for the PF feeder, applied to ITER and needed to convey the cryogenic supply and electrical power to the PF magnets, was built up. The magnetic flux density and the EM force under the worst conditions with the maximum working current in each coil were then calc...
Saved in:
Published in | Plasma science & technology Vol. 13; no. 5; pp. 623 - 626 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.10.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 1009-0630 |
DOI | 10.1088/1009-0630/13/5/22 |
Cover
Loading…
Summary: | An electromagnetic (EM) analytic model for the PF feeder, applied to ITER and needed to convey the cryogenic supply and electrical power to the PF magnets, was built up. The magnetic flux density and the EM force under the worst conditions with the maximum working current in each coil were then calculated. Based on the EM analysis and theoretical calculation, the relationship between the busbar stress and the distance of neighbouring busbar supports was obtained, which provides an approach to optimize the design of the busbar supports. In order to check the feasibility of the PF feeder structure, a finite element model was built up and the ANSYS code was applied to analyze the stress and displacement. The numerical results show that the stress of the PF feeder is within the allowable limits and the structure is feasible. |
---|---|
Bibliography: | PF feeder, ITER, design, analysis 34-1187/TL An electromagnetic (EM) analytic model for the PF feeder, applied to ITER and needed to convey the cryogenic supply and electrical power to the PF magnets, was built up. The magnetic flux density and the EM force under the worst conditions with the maximum working current in each coil were then calculated. Based on the EM analysis and theoretical calculation, the relationship between the busbar stress and the distance of neighbouring busbar supports was obtained, which provides an approach to optimize the design of the busbar supports. In order to check the feasibility of the PF feeder structure, a finite element model was built up and the ANSYS code was applied to analyze the stress and displacement. The numerical results show that the stress of the PF feeder is within the allowable limits and the structure is feasible. |
ISSN: | 1009-0630 |
DOI: | 10.1088/1009-0630/13/5/22 |