Coupled buckling and postbuckling analysis of active laminated piezoelectric composite plates

A theoretical framework for analyzing the pre- and postbuckling response of composite laminates and plates with piezoactuators and sensors is presented. The mechanics include nonlinear effects due to large rotations and stress stiffening, and are incorporated into a coupled mixed-field piezoelectric...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of solids and structures Vol. 41; no. 5; pp. 1519 - 1538
Main Authors Varelis, Dimitris, Saravanos, Dimitris A.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A theoretical framework for analyzing the pre- and postbuckling response of composite laminates and plates with piezoactuators and sensors is presented. The mechanics include nonlinear effects due to large rotations and stress stiffening, and are incorporated into a coupled mixed-field piezoelectric laminate theory. Using the previous mechanics, a nonlinear finite element method and an incremental-iterative solution are formulated for the analysis of nonlinear adaptive plate structures subject to in-plane electromechanical loading. A novel eight-node nonlinear plate finite element is also developed. Evaluation cases predict the buckling and postbuckling response of adaptive composite beams and plates with piezoelectric actuators and sensors. The case of piezoelectric buckling and postbuckling induced by the actuators is addressed and quantified. Finally, the possibility to actively mitigate the mechanical buckling and postbuckling response of adaptive piezocomposite plates is illustrated.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0020-7683
1879-2146
DOI:10.1016/j.ijsolstr.2003.09.034