Strongly Enhanced Sensitivity in Planar Microwave Sensors Based on Metamaterial Coupling

Limited sensitivity and sensing range are arguably the greatest challenges in microwave sensor design. Recent attempts to improve these properties have relied on metamaterial (MTM)-inspired open-loop resonators coupled to transmission lines (TLs). Although the strongly resonant properties of the res...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 66; no. 4; pp. 1843 - 1855
Main Authors Abdolrazzaghi, Mohammad, Daneshmand, Mojgan, Iyer, Ashwin K.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Limited sensitivity and sensing range are arguably the greatest challenges in microwave sensor design. Recent attempts to improve these properties have relied on metamaterial (MTM)-inspired open-loop resonators coupled to transmission lines (TLs). Although the strongly resonant properties of the resonator sensitively reflect small changes in the environment through a shift in its resonance frequency, the resulting sensitivities remain ultimately limited by the level of coupling between the resonator and the TL. This paper introduces a novel solution to this problem that employs negative-refractive-index TL MTMs to substantially improve this coupling so as to fully exploit its resonant properties. A MTM-infused planar microwave sensor is designed for operation at 2.5 GHz, and is shown to exhibit a significant improvement in sensitivity and linearity. A rigorous signal-flow analysis of the sensor is proposed and shown to provide a fully analytical description of all salient features of both the conventional and MTM-infused sensors. Full-wave simulations confirm the analytical predictions, and all data demonstrate excellent agreement with measurements of a fabricated prototype. The proposed device is shown to be especially useful in the characterization of commonly available high-permittivity liquids as well as in sensitively distinguishing concentrations of ethanol/methanol in water.
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2018.2791942