Prenatal hypoxia programs changes in β-adrenergic signaling and postnatal cardiac contractile dysfunction

Prenatal hypoxia leads to an increased risk of adult cardiovascular disease. We have previously demonstrated a programming effect of prenatal hypoxia on the cardiac β-adrenergic (βAR) response. The aim of this study was to determine 1) whether the decrease in βAR sensitivity in prenatally hypoxic 5-...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Regulatory, integrative and comparative physiology Vol. 305; no. 10; pp. R1093 - R1101
Main Authors Lindgren, I, Altimiras, J
Format Journal Article
LanguageEnglish
Published United States 15.11.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Prenatal hypoxia leads to an increased risk of adult cardiovascular disease. We have previously demonstrated a programming effect of prenatal hypoxia on the cardiac β-adrenergic (βAR) response. The aim of this study was to determine 1) whether the decrease in βAR sensitivity in prenatally hypoxic 5-wk old chicken hearts is linked to changes in β1AR/β2ARs, Gαi expression and cAMP accumulation and 2) whether prenatal hypoxia has an effect on heart function in vivo. We incubated eggs in normoxia (N, 21% O2) or hypoxia from day 0 (H, 14% O2) and raised the posthatchlings to 5 wk of age. Cardiac β1AR/β2ARs were assessed through competitive binding of [(3)H]CGP-12177 with specific β1AR or β2AR blockers. Gαs and Gαi proteins were assessed by Western blot and cAMP accumulation by ELISA. Echocardiograms were recorded in anesthetized birds to evaluate diastolic/systolic diameter and heart rate and tissue sections were stained for collagen. We found an increase in relative heart mass, β1ARs, and Gαs in prenatally hypoxic hearts. cAMP levels after isoproterenol stimulation and collagen content was not changed in H compared with N, but in vivo echocardiograms showed systolic contractile dysfunction. The changes in βAR and G protein subtypes may be indicative of an early compensatory stage in the progression of cardiac dysfunction, further supported by the cardiac hypertrophy and systolic contractile dysfunction. We suggest that it is not the changes in the proximal part of the βAR system that causes the decreased cardiac contractility, but Ca(2+) handling mechanisms further downstream in the βAR signaling cascade.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0363-6119
1522-1490
1522-1490
DOI:10.1152/ajpregu.00320.2013