A Micropulse eye-safe all-fiber molecular backscatter coherent temperature lidar
In this paper, we analyze the performance of an all-fiber, micropulse, 1.5 μm coherent lidar for remote sensing of atmospheric temperature. The proposed system benefits from the recent advances in optics/electronics technology, especially an all-fiber image-reject homodyne receiver, where a high res...
Saved in:
Published in | EPJ Web of Conferences Vol. 119; p. 25005 |
---|---|
Main Authors | , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Les Ulis
EDP Sciences
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we analyze the performance of an all-fiber, micropulse, 1.5 μm coherent lidar for remote sensing of atmospheric temperature. The proposed system benefits from the recent advances in optics/electronics technology, especially an all-fiber image-reject homodyne receiver, where a high resolution spectrum in the baseband can be acquired. Due to the presence of a structured spectra resulting from the spontaneous Rayleigh-Brillouine scattering, associated with the relevant operating regimes, an accurate estimation of the temperature can be carried out. One of the main advantages of this system is the removal of the contaminating Mie backscatter signal by electronic filters at the baseband (before signal conditioning and amplification). The paper presents the basic concepts as well as a Monte-Carlo system simulation as the proof of concept. |
---|---|
ISSN: | 2100-014X 2101-6275 2100-014X |
DOI: | 10.1051/epjconf/201611925005 |