Three-Dimensional Numerical Simulation of Pyrolysis of Polymethyl Methacrylate under Non-Uniform Radiative Heating

PMMA material is widely used in the building and household industries, and its pyrolysis behavior is important for fire safety. In real fire conditions, polymethyl methacrylate (PMMA) material will receive non-uniform distributed radiative heat flux from heat sources (such as fire). However, most of...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 14; no. 24; p. 5360
Main Author Sun, Yujia
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 07.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:PMMA material is widely used in the building and household industries, and its pyrolysis behavior is important for fire safety. In real fire conditions, polymethyl methacrylate (PMMA) material will receive non-uniform distributed radiative heat flux from heat sources (such as fire). However, most of the existing work on this subject is limited to one dimensional geometry with uniform heat flux. This paper investigates the heat transfer and pyrolysis mechanism of PMMA material under non-uniform radiative heat flux. A three-dimensional model is developed to this end with a consideration of in-depth radiation and surface heat loss. The results show that temperature and density contours are highly non-uniform inside the solid and there is both a high-temperature core and low-density core beneath the surface. The maximum temperature occurs at a location under the top surface.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym14245360