3D porous and self-supporting Ni foam@graphene@Ni3S2 as a bifunctional electrocatalyst for overall water splitting in alkaline solution

Low-cost transition metal sulfides are considered as one kind of the most promising catalysts for the electrochemical water-splitting. In this work, a facile electrochemical method was employed to directly deposit Ni3S2 on Ni foam (NF) decorated with graphene (G) for the construction of a self-suppo...

Full description

Saved in:
Bibliographic Details
Published inJournal of electroanalytical chemistry (Lausanne, Switzerland) Vol. 858; p. 113795
Main Authors Jin, Chenglong, Zhou, Nan, Wang, Yilong, Li, Xi, Chen, Ming, Dong, Yongzhi, Yu, Zhengsong, Liang, Yani, Qu, Deyu, Dong, Yulin, Xie, Zhizhong, Zhang, Chaocan
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.02.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN1572-6657
1873-2569
DOI10.1016/j.jelechem.2019.113795

Cover

Loading…
Abstract Low-cost transition metal sulfides are considered as one kind of the most promising catalysts for the electrochemical water-splitting. In this work, a facile electrochemical method was employed to directly deposit Ni3S2 on Ni foam (NF) decorated with graphene (G) for the construction of a self-supporting electrocatalyst NF@G@Ni3S2 with a 3D porous structure. Due to the intrinsic catalytic activity and continuous NiNi network of Ni3S2, 3D porous structure of NF and the excellent electron conductivity of the graphene as well as their synergistic effects, NF@G-5@Ni3S2 exhibited an excellent electrocatalytic performance. In the alkaline solution, the low overpotentials of 119 and 249 mV were required to reach a current density of 10 mA cm−2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. And the Tafel slopes were only 64.8 and 98.2 mV dec−1 for HER and OER, respectively. Remarkably, by employing NF@G-5@Ni3S2 as both anode and cathode for full water splitting, a very low cell voltage of 1.62 V was needed to reach 10 mA cm−2. Moreover, NF@G-5@Ni3S2 also showed an excellent stability for all HER, OER and overall water-splitting, demonstrating a potential prospect of NF@G-5@Ni3S2 for the practical application. Our work opens up a new direction for the development of non-noble metal electrocatalysts. [Display omitted] •3D porous and self-supporting NF@G@Ni3S2 was constructed by facile electrodeposition.•NF@G-5@Ni3S2 had excellent electrocatalytic performance for HER, OER and water splitting.•NF@G-5@Ni3S2 as anode and cathode for water splitting, only 1.62 V was needed to reach 10 mA cm−2.•NiNi network of Ni3S2, 3D porous structure of NF and excellent electron conductivity of graphene benefits electrocatalysis.
AbstractList Low-cost transition metal sulfides are considered as one kind of the most promising catalysts for the electrochemical water-splitting. In this work, a facile electrochemical method was employed to directly deposit Ni3S2 on Ni foam (NF) decorated with graphene (G) for the construction of a self-supporting electrocatalyst NF@G@Ni3S2 with a 3D porous structure. Due to the intrinsic catalytic activity and continuous NiNi network of Ni3S2, 3D porous structure of NF and the excellent electron conductivity of the graphene as well as their synergistic effects, NF@G-5@Ni3S2 exhibited an excellent electrocatalytic performance. In the alkaline solution, the low overpotentials of 119 and 249 mV were required to reach a current density of 10 mA cm−2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. And the Tafel slopes were only 64.8 and 98.2 mV dec−1 for HER and OER, respectively. Remarkably, by employing NF@G-5@Ni3S2 as both anode and cathode for full water splitting, a very low cell voltage of 1.62 V was needed to reach 10 mA cm−2. Moreover, NF@G-5@Ni3S2 also showed an excellent stability for all HER, OER and overall water-splitting, demonstrating a potential prospect of NF@G-5@Ni3S2 for the practical application. Our work opens up a new direction for the development of non-noble metal electrocatalysts. [Display omitted] •3D porous and self-supporting NF@G@Ni3S2 was constructed by facile electrodeposition.•NF@G-5@Ni3S2 had excellent electrocatalytic performance for HER, OER and water splitting.•NF@G-5@Ni3S2 as anode and cathode for water splitting, only 1.62 V was needed to reach 10 mA cm−2.•NiNi network of Ni3S2, 3D porous structure of NF and excellent electron conductivity of graphene benefits electrocatalysis.
Low-cost transition metal sulfides are considered as one kind of the most promising catalysts for the electrochemical water-splitting. In this work, a facile electrochemical method was employed to directly deposit Ni3S2 on Ni foam (NF) decorated with graphene (G) for the construction of a self-supporting electrocatalyst NF@G@Ni3S2 with a 3D porous structure. Due to the intrinsic catalytic activity and continuous NiNi network of Ni3S2, 3D porous structure of NF and the excellent electron conductivity of the graphene as well as their synergistic effects, NF@G-5@Ni3S2 exhibited an excellent electrocatalytic performance. In the alkaline solution, the low overpotentials of 119 and 249 mV were required to reach a current density of 10 mA cm−2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. And the Tafel slopes were only 64.8 and 98.2 mV dec−1 for HER and OER, respectively. Remarkably, by employing NF@G-5@Ni3S2 as both anode and cathode for full water splitting, a very low cell voltage of 1.62 V was needed to reach 10 mA cm−2. Moreover, NF@G-5@Ni3S2 also showed an excellent stability for all HER, OER and overall water-splitting, demonstrating a potential prospect of NF@G-5@Ni3S2 for the practical application. Our work opens up a new direction for the development of non-noble metal electrocatalysts.
ArticleNumber 113795
Author Wang, Yilong
Chen, Ming
Xie, Zhizhong
Liang, Yani
Jin, Chenglong
Dong, Yongzhi
Qu, Deyu
Yu, Zhengsong
Zhou, Nan
Zhang, Chaocan
Li, Xi
Dong, Yulin
Author_xml – sequence: 1
  givenname: Chenglong
  surname: Jin
  fullname: Jin, Chenglong
  organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 2
  givenname: Nan
  surname: Zhou
  fullname: Zhou, Nan
  organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 3
  givenname: Yilong
  surname: Wang
  fullname: Wang, Yilong
  organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 4
  givenname: Xi
  surname: Li
  fullname: Li, Xi
  email: chemlixi@whut.edu.cn
  organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 5
  givenname: Ming
  surname: Chen
  fullname: Chen, Ming
  organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 6
  givenname: Yongzhi
  surname: Dong
  fullname: Dong, Yongzhi
  organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 7
  givenname: Zhengsong
  surname: Yu
  fullname: Yu, Zhengsong
  organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 8
  givenname: Yani
  surname: Liang
  fullname: Liang, Yani
  organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 9
  givenname: Deyu
  orcidid: 0000-0001-8514-2646
  surname: Qu
  fullname: Qu, Deyu
  organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 10
  givenname: Yulin
  surname: Dong
  fullname: Dong, Yulin
  organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 11
  givenname: Zhizhong
  surname: Xie
  fullname: Xie, Zhizhong
  organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 12
  givenname: Chaocan
  surname: Zhang
  fullname: Zhang, Chaocan
  email: polymers@whut.edu.cn
  organization: School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
BookMark eNqFkE1vFSEUholpE_vhXzAkrucKAwwziYtram1NmnahrgmXObSMXBiBqekv8G_LeHXTTTdAyPu8Oec5RUchBkDoLSUbSmj3ftpM4ME8wH7TEjpsKGVyEK_QCe0la1rRDUf1LWTbdJ2Qr9FpzhMhbd_T9gT9Zp_wHFNcMtZhxBm8bfIy16_iwj2-ddhGvd_eJz0_QIDtrWNfW6xrGu-cXYIpLgbt8TpBSdHoov1TLpVKOD5C0t7jX7pAwnn2rvwtdQFr_0N7FwDn6Je14hwdW-0zvPl3n6Hvny-_XVw3N3dXXy4-3jSGcVIaGOXQ7gjhVhDTGd5bwbWmIEduRD2YtS3pDeGSWNbxwUouyCDsYKjux51kZ-jdoXdO8ecCuagpLqlukFXLZDfwmuc19eGQMinmnMAq44pe5yxJO68oUat6Nan_6tWqXh3UV7x7hs_J7XV6ehncHkCoCh4dJJWNg2BgdKn6VWN0L1X8AWs1pnI
CitedBy_id crossref_primary_10_1016_j_ijhydene_2022_03_014
crossref_primary_10_1007_s10800_022_01679_w
crossref_primary_10_1039_D1TA01267C
crossref_primary_10_1039_D1SE01708J
crossref_primary_10_1021_acs_jpcc_4c02187
crossref_primary_10_1016_j_jcis_2021_07_101
crossref_primary_10_1016_j_ijhydene_2023_04_023
crossref_primary_10_1021_acs_inorgchem_4c03664
crossref_primary_10_1002_smll_202005255
crossref_primary_10_1016_j_ijhydene_2024_03_045
crossref_primary_10_1016_j_jallcom_2025_179912
crossref_primary_10_1016_j_mcat_2024_114197
crossref_primary_10_1016_j_jechem_2020_05_026
crossref_primary_10_1016_j_jelechem_2022_116014
crossref_primary_10_1149_1945_7111_ac6e91
crossref_primary_10_1016_j_jelechem_2022_116037
crossref_primary_10_3390_coatings13101816
crossref_primary_10_1016_j_jallcom_2024_173894
crossref_primary_10_1016_j_jelechem_2022_116216
crossref_primary_10_1016_j_ijhydene_2022_10_199
Cites_doi 10.1021/acsami.8b00211
10.1007/s12274-017-1754-5
10.1021/acsnano.7b08724
10.1016/j.mtener.2018.09.004
10.1016/j.ijhydene.2018.03.110
10.1016/j.jelechem.2018.11.031
10.1021/acsami.7b09634
10.1016/j.energy.2016.11.053
10.1039/C7TA00743D
10.1002/advs.201700733
10.1021/acsami.6b13244
10.1016/j.jpowsour.2018.08.088
10.1016/j.pecs.2009.11.002
10.1021/acsami.8b00813
10.1016/j.apcatb.2018.09.064
10.1021/ja01539a017
10.1039/C8RA01764F
10.1016/j.ijhydene.2015.10.142
10.1021/acsami.7b14506
10.1039/C7CC06668F
10.1016/j.jpowsour.2014.07.188
10.1002/aenm.201402031
10.1039/C7TA03039H
10.1039/C8TA01552J
10.1021/jacs.7b08521
10.1039/C8TA01061G
10.1016/j.nanoen.2018.03.012
10.1039/C8TA07162D
10.1016/j.apcatb.2014.02.017
10.1016/j.ijhydene.2018.02.013
10.1021/acsenergylett.8b00066
10.1016/j.cej.2019.122603
10.1039/C8EE00076J
10.1016/j.apsusc.2016.12.042
10.1016/j.electacta.2013.10.140
10.1016/j.jallcom.2017.10.194
10.1039/C6TA10303K
10.1039/C7TA10977F
10.1039/C7TA04893A
10.1016/j.ijhydene.2019.06.196
10.1016/j.apsusc.2018.02.076
10.1016/j.electacta.2017.05.099
10.1016/j.electacta.2011.04.046
10.1039/C5TA06788J
10.1002/adma.201605838
10.1016/j.jssc.2018.12.004
10.1016/j.apcatb.2019.118012
10.1016/j.apsusc.2017.07.119
10.1002/aenm.201703538
10.1021/acscatal.7b04276
10.1016/j.electacta.2018.12.169
10.1021/jacs.7b06337
10.1002/smll.201700264
10.1016/j.jelechem.2017.01.004
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier Science Ltd. Feb 1, 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Feb 1, 2020
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.jelechem.2019.113795
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-2569
ExternalDocumentID 10_1016_j_jelechem_2019_113795
S157266571931063X
GroupedDBID --K
--M
-~X
.~1
1B1
1RT
1~.
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M23
M2Z
M41
MO0
N9A
NQ-
O-L
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
RPZ
SCB
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
YQT
~02
186
29K
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
RIG
ROL
SCH
SEW
SSH
WUQ
7SR
8BQ
8FD
EFKBS
JG9
ID FETCH-LOGICAL-c340t-ed792b004f50c6c48f54aa1e7d4c57d43ff208c0470f3649f745095f9c1a8db73
IEDL.DBID .~1
ISSN 1572-6657
IngestDate Sun Sep 07 03:45:07 EDT 2025
Thu Apr 24 23:02:25 EDT 2025
Tue Jul 01 00:22:18 EDT 2025
Fri Feb 23 02:47:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydrogen evolution reaction
Water splitting
Reduced oxide graphene
Oxygen evolution reaction
Nickel foam
Nickel sulfide
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-ed792b004f50c6c48f54aa1e7d4c57d43ff208c0470f3649f745095f9c1a8db73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8514-2646
PQID 2376944504
PQPubID 2047557
ParticipantIDs proquest_journals_2376944504
crossref_citationtrail_10_1016_j_jelechem_2019_113795
crossref_primary_10_1016_j_jelechem_2019_113795
elsevier_sciencedirect_doi_10_1016_j_jelechem_2019_113795
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of electroanalytical chemistry (Lausanne, Switzerland)
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Mahale, Ingle (bb0100) 2017; 119
Sha, Ye, Yin, Zhu, Cheng, Yan, Wang, Cao (bb0170) 2020; 381
Kou, Smart, Yao, Chen, Thota, Ping, Li (bb0205) 2018; 8
Yuan, Pan, Li, Jiang (bb0160) 2019; 44
Zhang, Li, Yang, Fa, Ge (bb0260) 2018; 732
Hu, Feng, Nai, Zhao, Hu, Lou (bb0040) 2018; 11
Zeng, Zhang (bb0005) 2010; 36
Liu, Xie, Liu, Du, Asiri, Sun (bb0180) 2017; 53
Shervedani, Torabi, Yaghoobi (bb0085) 2017; 244
Zarębska, Skompska (bb0235) 2011; 56
Gonzalezbuch, Herraizcardona, Ortega, Mestre, Perezherranz (bb0095) 2016; 41
Zhou, Weng, Popov, Yang, Antipina, Sorokin, Wang, Bando, Golberg (bb0035) 2018; 12
Tang, Li, Wang, Dou, Liu, Ji, Song (bb0240) 2018; 427
Lv, Miura, Meng, Liang (bb0145) 2017; 399
Cheng, Liu, Asiri, Xing, Sun (bb0220) 2015; 3
Zhou, Xi, Yang, Wu (bb0125) 2019; 270
Diao, Qin, Zhao, Shi, Liu, He, Ma, Li, He (bb0025) 2018; 6
Chen, Chen, Zhang, Yang, Jiang (bb0245) 2019; 258
Wei, Xi, Chen, Guo, Ding, Yang, Wang, Li, Huang (bb0265) 2018; 5
Ho, Bae, Nam, Kim, Lee, Park, Shin (bb0130) 2018; 10
Zhang, Yang, Ziaee, Lu, Wang (bb0015) 2018; 10
Pierozynski, Mikolajczyk, Kowalski (bb0090) 2014; 271
Lin, Liu, Dai (bb0150) 2014; 154
Lu, Song, Dou, Ji, Wang (bb0105) 2018; 43
Chen, Yu, Chen, Liu, Li, Zhu, Tao, Li, Liu, Shen, Li, Huang, Wang, Asefa, Zou (bb0055) 2017; 139
Xu, Jiang, Zhang, Hu, Li (bb0110) 2019; 242
Lv, Liang, Yang, Suzuki, Miura (bb0230) 2017; 786
Liu, Sun, Zhang, Wang, Wang, Wu, Zhang, Zhao (bb0185) 2018; 6
Hu, Zhang, Meng, Lin, Hu, Long, Yang (bb0070) 2017; 5
Qu, Yang, Chai, Tang, Shao, Kwok, Yang, Wang, Chua, Wang, Lu, Pan (bb0215) 2017; 9
Boobphahom, Rattanawaleedirojn, Boonyongmaneerat, Rengpipat, Chailapakul, Rodthongkum (bb0165) 2019; 833
Shim, Hong, Yang, Choi (bb0075) 2017; 5
Wang, Wu, Sun, Ma, Shen, Li, Zheng (bb0115) 2018; 10
Dong, Zhang, Dai, Wang, Zhao, Shao, Huang, Dong (bb0135) 2018; 11
Yu, Li, Xu, Chen, Li, Liu, Zhen, Dravid, Wu (bb0270) 2017; 5
Wu, Liu, Wang, Su, Yan, Ng, Li, Wei (bb0250) 2018; 441
Tiwari, Azam, Novak, Prakash, Jeon (bb0255) 2018; 6
Min, Zhao, Chen, Qian (bb0190) 2014; 115
Feng, Wu, Tong, Li (bb0120) 2018; 140
Lv, Zhao, Fang, Jiang, Li, Ma, Zhu (bb0195) 2017; 13
Lin, Wang, Zheng, Du, Zhao, Qi, Cao, Fei, Feng (bb0140) 2018; 401
Jiang, Liu, Zeng, Ai (bb0060) 2017; 5
Hummers, Offeman (bb0175) 1958; 80
Cai, Shi, Bao, Shen, Xia, Zheng (bb0010) 2018; 8
Peng, Jia, Alenizi, Elzatahry, Zheng (bb0200) 2015; 5
Tian, Lei, Wang (bb0210) 2017; 9
Wang, Zheng, Yu, Wang, Hou, Zhang, Chen (bb0030) 2018; 6
Guo, Tang, Wang, Kang, Bando, Yamauchi (bb0045) 2018; 47
Zhang, Liu, Sun, Xi, Peng, Gao, Xue (bb0065) 2018; 3
Meng, Zhang, Ma, Zhang, Tang, Li, Wang (bb0020) 2018; 10
Wang, Xu, Jin, Chen, Wang (bb0050) 2017; 29
Liao, Zhu, Xie, Zeng, Yi, Cheng, Kuang, Deng, Cao (bb0225) 2018; 8
Tasci, Yuksel, Solmaz (bb0080) 2018; 43
Liu, Zeng, He, Dong, He, Zhang, Wang, Li, Liu, Jia (bb0155) 2019; 299
Wang (10.1016/j.jelechem.2019.113795_bb0030) 2018; 6
Jiang (10.1016/j.jelechem.2019.113795_bb0060) 2017; 5
Wang (10.1016/j.jelechem.2019.113795_bb0050) 2017; 29
Guo (10.1016/j.jelechem.2019.113795_bb0045) 2018; 47
Tang (10.1016/j.jelechem.2019.113795_bb0240) 2018; 427
Lu (10.1016/j.jelechem.2019.113795_bb0105) 2018; 43
Cheng (10.1016/j.jelechem.2019.113795_bb0220) 2015; 3
Zhou (10.1016/j.jelechem.2019.113795_bb0125) 2019; 270
Xu (10.1016/j.jelechem.2019.113795_bb0110) 2019; 242
Qu (10.1016/j.jelechem.2019.113795_bb0215) 2017; 9
Lin (10.1016/j.jelechem.2019.113795_bb0140) 2018; 401
Feng (10.1016/j.jelechem.2019.113795_bb0120) 2018; 140
Yuan (10.1016/j.jelechem.2019.113795_bb0160) 2019; 44
Meng (10.1016/j.jelechem.2019.113795_bb0020) 2018; 10
Pierozynski (10.1016/j.jelechem.2019.113795_bb0090) 2014; 271
Wang (10.1016/j.jelechem.2019.113795_bb0115) 2018; 10
Boobphahom (10.1016/j.jelechem.2019.113795_bb0165) 2019; 833
Lin (10.1016/j.jelechem.2019.113795_bb0150) 2014; 154
Hummers (10.1016/j.jelechem.2019.113795_bb0175) 1958; 80
Chen (10.1016/j.jelechem.2019.113795_bb0055) 2017; 139
Yu (10.1016/j.jelechem.2019.113795_bb0270) 2017; 5
Cai (10.1016/j.jelechem.2019.113795_bb0010) 2018; 8
Hu (10.1016/j.jelechem.2019.113795_bb0040) 2018; 11
Shervedani (10.1016/j.jelechem.2019.113795_bb0085) 2017; 244
Sha (10.1016/j.jelechem.2019.113795_bb0170) 2020; 381
Gonzalezbuch (10.1016/j.jelechem.2019.113795_bb0095) 2016; 41
Tiwari (10.1016/j.jelechem.2019.113795_bb0255) 2018; 6
Liu (10.1016/j.jelechem.2019.113795_bb0155) 2019; 299
Tasci (10.1016/j.jelechem.2019.113795_bb0080) 2018; 43
Lv (10.1016/j.jelechem.2019.113795_bb0145) 2017; 399
Ho (10.1016/j.jelechem.2019.113795_bb0130) 2018; 10
Zhang (10.1016/j.jelechem.2019.113795_bb0015) 2018; 10
Lv (10.1016/j.jelechem.2019.113795_bb0195) 2017; 13
Mahale (10.1016/j.jelechem.2019.113795_bb0100) 2017; 119
Zeng (10.1016/j.jelechem.2019.113795_bb0005) 2010; 36
Liu (10.1016/j.jelechem.2019.113795_bb0180) 2017; 53
Wu (10.1016/j.jelechem.2019.113795_bb0250) 2018; 441
Liu (10.1016/j.jelechem.2019.113795_bb0185) 2018; 6
Zarębska (10.1016/j.jelechem.2019.113795_bb0235) 2011; 56
Zhang (10.1016/j.jelechem.2019.113795_bb0065) 2018; 3
Shim (10.1016/j.jelechem.2019.113795_bb0075) 2017; 5
Wei (10.1016/j.jelechem.2019.113795_bb0265) 2018; 5
Kou (10.1016/j.jelechem.2019.113795_bb0205) 2018; 8
Liao (10.1016/j.jelechem.2019.113795_bb0225) 2018; 8
Min (10.1016/j.jelechem.2019.113795_bb0190) 2014; 115
Chen (10.1016/j.jelechem.2019.113795_bb0245) 2019; 258
Zhou (10.1016/j.jelechem.2019.113795_bb0035) 2018; 12
Dong (10.1016/j.jelechem.2019.113795_bb0135) 2018; 11
Tian (10.1016/j.jelechem.2019.113795_bb0210) 2017; 9
Zhang (10.1016/j.jelechem.2019.113795_bb0260) 2018; 732
Peng (10.1016/j.jelechem.2019.113795_bb0200) 2015; 5
Lv (10.1016/j.jelechem.2019.113795_bb0230) 2017; 786
Diao (10.1016/j.jelechem.2019.113795_bb0025) 2018; 6
Hu (10.1016/j.jelechem.2019.113795_bb0070) 2017; 5
References_xml – volume: 786
  start-page: 8
  year: 2017
  end-page: 13
  ident: bb0230
  article-title: The plume-like Ni
  publication-title: J. Electroanal. Chem.
– volume: 258
  year: 2019
  ident: bb0245
  article-title: Insight into the excellent catalytic activity of (CoMo)S
  publication-title: Appl. Catal., B
– volume: 119
  start-page: 872
  year: 2017
  end-page: 878
  ident: bb0100
  article-title: Electrocatalytic hydrogen evolution reaction on nano-nickel decorated graphene electrode
  publication-title: Energy
– volume: 299
  start-page: 405
  year: 2019
  end-page: 414
  ident: bb0155
  article-title: Samarium oxide modified Ni-Co nanosheets based three-dimensional honeycomb film on nickel foam: a highly efficient electrocatalyst for hydrogen evolution reaction
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 5959
  year: 2017
  end-page: 5967
  ident: bb0215
  article-title: Facile synthesis of vanadium-doped Ni
  publication-title: ACS Appl. Mater. Interfaces
– volume: 381
  year: 2020
  ident: bb0170
  article-title: In situ grown 3D hierarchical MnCo
  publication-title: Chem. Eng. J.
– volume: 44
  start-page: 22947
  year: 2019
  end-page: 22954
  ident: bb0160
  article-title: Three-dimensional Ni foam supported pristine graphene as a superior oxygen evolution electrode
  publication-title: Int. J. Hydrog. Energy
– volume: 10
  start-page: 2430
  year: 2018
  end-page: 2441
  ident: bb0020
  article-title: Self-supported ternary Ni-S-Se nanorod arrays as highly active electrocatalyst for hydrogen generation in both acidic and basic media: experimental investigation and DFT calculation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 43
  start-page: 10580
  year: 2018
  end-page: 10585
  ident: bb0080
  article-title: Three-dimensional nickel nanodomes: efficient electrocatalysts for water splitting
  publication-title: Int. J. Hydrog. Energy
– volume: 833
  start-page: 133
  year: 2019
  end-page: 142
  ident: bb0165
  article-title: TiO
  publication-title: J. Electroanal. Chem.
– volume: 10
  start-page: 9460
  year: 2018
  end-page: 9467
  ident: bb0015
  article-title: Nanohybrid of carbon quantum dots/molybdenum phosphide nanoparticle for efficient electrochemical hydrogen evolution in alkaline medium
  publication-title: ACS Appl. Mater. Interfaces
– volume: 154
  start-page: 213
  year: 2014
  end-page: 220
  ident: bb0150
  article-title: Ni
  publication-title: Appl. Catal. B Environ.
– volume: 29
  start-page: 1605838
  year: 2017
  ident: bb0050
  article-title: Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications
  publication-title: Adv. Mater.
– volume: 56
  start-page: 5731
  year: 2011
  end-page: 5739
  ident: bb0235
  article-title: Electrodeposition of CdS from acidic aqueous thiosulfate solution—invesitigation of the mechanism by electrochemical quartz microbalance technique
  publication-title: Electrochim. Acta
– volume: 12
  start-page: 4148
  year: 2018
  end-page: 4155
  ident: bb0035
  article-title: Construction of polarized carbon-nickel catalytic surfaces for potent, durable and economic hydrogen evolution reactions
  publication-title: ACS Nano
– volume: 11
  start-page: 1389
  year: 2018
  end-page: 1398
  ident: bb0135
  article-title: Graphene as an intermediary for enhancing the electron transfer rate: a free-standing Ni
  publication-title: Nano Res.
– volume: 115
  start-page: 155
  year: 2014
  end-page: 164
  ident: bb0190
  article-title: One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 6054
  year: 2018
  end-page: 6064
  ident: bb0025
  article-title: “Ethanol–water exchange” nanobubbles templated hierarchical hollow β-Mo
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 872
  year: 2018
  end-page: 880
  ident: bb0040
  article-title: Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting
  publication-title: Energy Environ. Sci.
– volume: 43
  start-page: 8794
  year: 2018
  end-page: 8804
  ident: bb0105
  article-title: Self-supported Ni
  publication-title: Int. J. Hydrog. Energy
– volume: 6
  start-page: 19201
  year: 2018
  end-page: 19209
  ident: bb0185
  article-title: Vapor-phase hydrothermal transformation of a nanosheet array structure Ni(OH)
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2015
  ident: bb0200
  article-title: Electrocatalysts: from water oxidation to reduction: homologous Ni–Co based nanowires as complementary water splitting electrocatalysts
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 16929
  year: 2017
  end-page: 16935
  ident: bb0060
  article-title: Cobalt/molybdenum carbide@N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 23207
  year: 2015
  end-page: 23212
  ident: bb0220
  article-title: A Fe-doped Ni
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 14950
  year: 2017
  end-page: 14968
  ident: bb0075
  article-title: Tuning the catalytic functionality of transition metal dichalcogenides grown by chemical vapour deposition
  publication-title: J. Mater. Chem. A
– volume: 80
  start-page: 1339
  year: 1958
  ident: bb0175
  article-title: Preparation of graphitic oxide
  publication-title: J. Am. Chem. Soc.
– volume: 36
  start-page: 307
  year: 2010
  end-page: 326
  ident: bb0005
  article-title: Recent progress in alkaline water electrolysis for hydrogen production and applications
  publication-title: Prog. Energ. Combust.
– volume: 3
  start-page: 779
  year: 2018
  end-page: 786
  ident: bb0065
  article-title: Accelerated hydrogen evolution reaction in CoS
  publication-title: ACS Energy Lett
– volume: 53
  start-page: 12446
  year: 2017
  end-page: 12449
  ident: bb0180
  article-title: A Zn-doped Ni
  publication-title: Chem. Commun.
– volume: 399
  start-page: 769
  year: 2017
  end-page: 774
  ident: bb0145
  article-title: Synthesis of Ni
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 3895
  year: 2018
  end-page: 3902
  ident: bb0010
  article-title: Bioinspired engineering of cobalt-phosphonate nanosheets for robust hydrogen evolution reaction
  publication-title: ACS Catal.
– volume: 5
  start-page: 1700733
  year: 2018
  ident: bb0265
  article-title: Molybdenum carbide nanoparticles coated into the graphene wrapping N-doped porous carbon microspheres for highly efficient electrocatalytic hydrogen evolution both in acidic and alkaline media
  publication-title: Adv. Sci.
– volume: 401
  start-page: 329
  year: 2018
  end-page: 335
  ident: bb0140
  article-title: Controllable synthesis of core-branch Ni
  publication-title: J. Power Sources
– volume: 244
  start-page: 230
  year: 2017
  end-page: 238
  ident: bb0085
  article-title: Binder-free prickly nickel nanostructured/reduced graphene oxide composite: a highly efficient electrocatalyst for hydrogen evolution reaction in alkaline solutions
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 7842
  year: 2018
  end-page: 7850
  ident: bb0030
  article-title: In situ synthesis of hierarchical MoSe
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 12807
  year: 2018
  end-page: 12815
  ident: bb0130
  article-title: Metallic Ni
  publication-title: ACS Appl. Mater. Interfaces
– volume: 270
  start-page: 398
  year: 2019
  end-page: 406
  ident: bb0125
  article-title: In situ hydrothermal growth of metallic Co
  publication-title: J. Solid State Chem.
– volume: 427
  start-page: 267
  year: 2018
  end-page: 275
  ident: bb0240
  article-title: Electrodeposition mechanism of quaternary compounds Cu
  publication-title: Appl. Surf. Sci.
– volume: 441
  start-page: 1024
  year: 2018
  end-page: 1033
  ident: bb0250
  article-title: 3D structured Mo-doped Ni
  publication-title: Appl. Surf. Sci.
– volume: 47
  start-page: 494
  year: 2018
  end-page: 502
  ident: bb0045
  article-title: Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting
  publication-title: Nano Energy
– volume: 5
  start-page: 5995
  year: 2017
  end-page: 6012
  ident: bb0070
  article-title: Hydrogen evolution electrocatalysis with binary-nonmetal transition metal compounds
  publication-title: J. Mater. Chem. A
– volume: 139
  start-page: 12370
  year: 2017
  end-page: 12373
  ident: bb0055
  article-title: Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 764
  year: 2016
  end-page: 772
  ident: bb0095
  article-title: Synthesis and characterization of Au-modified macroporous Ni electrocatalysts for alkaline water electrolysis
  publication-title: Int. J. Hydrog. Energy
– volume: 9
  start-page: 40162
  year: 2017
  end-page: 40170
  ident: bb0210
  article-title: Polyoxometalate-surfactant hybrids directed assembly of Ni
  publication-title: ACS Appl. Mater. Interfaces
– volume: 732
  start-page: 248
  year: 2018
  end-page: 256
  ident: bb0260
  article-title: High-efficiency and stable alloyed nickel based electrodes for hydrogen evolution by seawater splitting
  publication-title: J. Alloys Compd.
– volume: 271
  start-page: 231
  year: 2014
  end-page: 238
  ident: bb0090
  article-title: Hydrogen evolution at catalytically-modified nickel foam in alkaline solution
  publication-title: J. Power Sources
– volume: 6
  start-page: 7786
  year: 2018
  end-page: 7793
  ident: bb0255
  article-title: Chemical strain formation through anion substitution in Cu
  publication-title: J. Mater. Chem. A
– volume: 13
  year: 2017
  ident: bb0195
  article-title: Incorporating nitrogen-doped graphene quantum dots and Ni
  publication-title: Small
– volume: 10
  start-page: 214
  year: 2018
  end-page: 221
  ident: bb0115
  article-title: Hierarchical MoS
  publication-title: Mater. Today Energy
– volume: 8
  year: 2018
  ident: bb0205
  article-title: Theoretical and experimental insight into the effect of nitrogen doping on hydrogen evolution activity of Ni
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 3981
  year: 2017
  end-page: 9986
  ident: bb0270
  article-title: NiSe
  publication-title: J. Mater. Chem. A
– volume: 140
  start-page: 610
  year: 2018
  end-page: 617
  ident: bb0120
  article-title: Efficient hydrogen evolution on Cu nanodots-decorated Ni
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 15315
  year: 2018
  end-page: 15325
  ident: bb0225
  article-title: Solvent-assisted thermal reduction of microcrystalline graphene oxide with excellent microwave absorption performance
  publication-title: RSC Adv.
– volume: 242
  start-page: 60
  year: 2019
  end-page: 66
  ident: bb0110
  article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)
  publication-title: Appl. Catal. B Environ.
– volume: 10
  start-page: 9460
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0015
  article-title: Nanohybrid of carbon quantum dots/molybdenum phosphide nanoparticle for efficient electrochemical hydrogen evolution in alkaline medium
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00211
– volume: 11
  start-page: 1389
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0135
  article-title: Graphene as an intermediary for enhancing the electron transfer rate: a free-standing Ni3S2@graphene@Co9S8 electrocatalytic electrode for oxygen evolution reaction
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1754-5
– volume: 12
  start-page: 4148
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0035
  article-title: Construction of polarized carbon-nickel catalytic surfaces for potent, durable and economic hydrogen evolution reactions
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08724
– volume: 10
  start-page: 214
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0115
  article-title: Hierarchical MoS2/Ni3S2 core-shell nanofibers for highly efficient and stable overall-water-splitting in alkaline media
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2018.09.004
– volume: 43
  start-page: 8794
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0105
  article-title: Self-supported Ni3S2@MoS2 core/shell nanorod arrays via decoration with CoS as a highly active and efficient electrocatalyst for hydrogen evolution and oxygen evolution reactions
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.03.110
– volume: 833
  start-page: 133
  year: 2019
  ident: 10.1016/j.jelechem.2019.113795_bb0165
  article-title: TiO2 sol/graphene modified 3D porous Ni foam: a novel platform for enzymatic electrochemical biosensor
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2018.11.031
– volume: 9
  start-page: 40162
  year: 2017
  ident: 10.1016/j.jelechem.2019.113795_bb0210
  article-title: Polyoxometalate-surfactant hybrids directed assembly of Ni3S2 into hollow microsphere as Pt-comparable electrocatalyst for hydrogen evolution reaction in alkaline medium
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b09634
– volume: 119
  start-page: 872
  year: 2017
  ident: 10.1016/j.jelechem.2019.113795_bb0100
  article-title: Electrocatalytic hydrogen evolution reaction on nano-nickel decorated graphene electrode
  publication-title: Energy
  doi: 10.1016/j.energy.2016.11.053
– volume: 5
  start-page: 5995
  year: 2017
  ident: 10.1016/j.jelechem.2019.113795_bb0070
  article-title: Hydrogen evolution electrocatalysis with binary-nonmetal transition metal compounds
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00743D
– volume: 5
  start-page: 1700733
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0265
  article-title: Molybdenum carbide nanoparticles coated into the graphene wrapping N-doped porous carbon microspheres for highly efficient electrocatalytic hydrogen evolution both in acidic and alkaline media
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700733
– volume: 9
  start-page: 5959
  year: 2017
  ident: 10.1016/j.jelechem.2019.113795_bb0215
  article-title: Facile synthesis of vanadium-doped Ni3S2 nanowire arrays as active electrocatalyst for hydrogen evolution reaction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13244
– volume: 401
  start-page: 329
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0140
  article-title: Controllable synthesis of core-branch Ni3S2/Co9S8 directly on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.08.088
– volume: 36
  start-page: 307
  year: 2010
  ident: 10.1016/j.jelechem.2019.113795_bb0005
  article-title: Recent progress in alkaline water electrolysis for hydrogen production and applications
  publication-title: Prog. Energ. Combust.
  doi: 10.1016/j.pecs.2009.11.002
– volume: 10
  start-page: 12807
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0130
  article-title: Metallic Ni3S2 films grown by atomic layer deposition as an efficient and stable electrocatalyst for overall water splitting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00813
– volume: 242
  start-page: 60
  year: 2019
  ident: 10.1016/j.jelechem.2019.113795_bb0110
  article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.09.064
– volume: 80
  start-page: 1339
  year: 1958
  ident: 10.1016/j.jelechem.2019.113795_bb0175
  article-title: Preparation of graphitic oxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01539a017
– volume: 8
  start-page: 15315
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0225
  article-title: Solvent-assisted thermal reduction of microcrystalline graphene oxide with excellent microwave absorption performance
  publication-title: RSC Adv.
  doi: 10.1039/C8RA01764F
– volume: 41
  start-page: 764
  year: 2016
  ident: 10.1016/j.jelechem.2019.113795_bb0095
  article-title: Synthesis and characterization of Au-modified macroporous Ni electrocatalysts for alkaline water electrolysis
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.10.142
– volume: 10
  start-page: 2430
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0020
  article-title: Self-supported ternary Ni-S-Se nanorod arrays as highly active electrocatalyst for hydrogen generation in both acidic and basic media: experimental investigation and DFT calculation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14506
– volume: 53
  start-page: 12446
  year: 2017
  ident: 10.1016/j.jelechem.2019.113795_bb0180
  article-title: A Zn-doped Ni3S2 nanosheet array as a high-performance electrochemical water oxidation catalyst in alkaline solution
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC06668F
– volume: 271
  start-page: 231
  year: 2014
  ident: 10.1016/j.jelechem.2019.113795_bb0090
  article-title: Hydrogen evolution at catalytically-modified nickel foam in alkaline solution
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.07.188
– volume: 5
  year: 2015
  ident: 10.1016/j.jelechem.2019.113795_bb0200
  article-title: Electrocatalysts: from water oxidation to reduction: homologous Ni–Co based nanowires as complementary water splitting electrocatalysts
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201402031
– volume: 5
  start-page: 14950
  year: 2017
  ident: 10.1016/j.jelechem.2019.113795_bb0075
  article-title: Tuning the catalytic functionality of transition metal dichalcogenides grown by chemical vapour deposition
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03039H
– volume: 6
  start-page: 7842
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0030
  article-title: In situ synthesis of hierarchical MoSe2–CoSe2 nanotubes as an efficient electrocatalyst for the hydrogen evolution reaction in both acidic and alkaline media
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01552J
– volume: 140
  start-page: 610
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0120
  article-title: Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08521
– volume: 6
  start-page: 7786
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0255
  article-title: Chemical strain formation through anion substitution in Cu2WS4 for efficient electrocatalysis of water dissociation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01061G
– volume: 47
  start-page: 494
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0045
  article-title: Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.012
– volume: 6
  start-page: 19201
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0185
  article-title: Vapor-phase hydrothermal transformation of a nanosheet array structure Ni(OH)2 into ultrathin Ni3S2 nanosheets on nickel foam for high-efficiency overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07162D
– volume: 154
  start-page: 213
  year: 2014
  ident: 10.1016/j.jelechem.2019.113795_bb0150
  article-title: Ni3S2/carbon nanotube nanocomposite as electrode material for hydrogen evolution reaction in alkaline electrolyte and enzyme-free glucose detection
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2014.02.017
– volume: 43
  start-page: 10580
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0080
  article-title: Three-dimensional nickel nanodomes: efficient electrocatalysts for water splitting
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.02.013
– volume: 3
  start-page: 779
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0065
  article-title: Accelerated hydrogen evolution reaction in CoS2 by transition-metal doping
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.8b00066
– volume: 381
  year: 2020
  ident: 10.1016/j.jelechem.2019.113795_bb0170
  article-title: In situ grown 3D hierarchical MnCo2O4.5@Ni(OH)2 nanosheet arrays on Ni foam for efficient electrocatalytic urea oxidation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122603
– volume: 11
  start-page: 872
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0040
  article-title: Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00076J
– volume: 399
  start-page: 769
  year: 2017
  ident: 10.1016/j.jelechem.2019.113795_bb0145
  article-title: Synthesis of Ni3S2 nanotube arrays on nickel foam by catalysis of thermal reduced graphene for hydrogen evolution reaction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.12.042
– volume: 115
  start-page: 155
  year: 2014
  ident: 10.1016/j.jelechem.2019.113795_bb0190
  article-title: One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.10.140
– volume: 732
  start-page: 248
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0260
  article-title: High-efficiency and stable alloyed nickel based electrodes for hydrogen evolution by seawater splitting
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.10.194
– volume: 5
  start-page: 3981
  year: 2017
  ident: 10.1016/j.jelechem.2019.113795_bb0270
  article-title: NiSe2 pyramids deposited on N-doped graphene encapsulated Ni foam for high-performance water oxidation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA10303K
– volume: 6
  start-page: 6054
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0025
  article-title: “Ethanol–water exchange” nanobubbles templated hierarchical hollow β-Mo2C/N-doped carbon composite nanospheres as an efficient hydrogen evolution electrocatalyst
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10977F
– volume: 5
  start-page: 16929
  year: 2017
  ident: 10.1016/j.jelechem.2019.113795_bb0060
  article-title: Cobalt/molybdenum carbide@N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04893A
– volume: 44
  start-page: 22947
  year: 2019
  ident: 10.1016/j.jelechem.2019.113795_bb0160
  article-title: Three-dimensional Ni foam supported pristine graphene as a superior oxygen evolution electrode
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.06.196
– volume: 441
  start-page: 1024
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0250
  article-title: 3D structured Mo-doped Ni3S2 nanosheets as efficient dual-electrocatalyst for overall water splitting
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.02.076
– volume: 244
  start-page: 230
  year: 2017
  ident: 10.1016/j.jelechem.2019.113795_bb0085
  article-title: Binder-free prickly nickel nanostructured/reduced graphene oxide composite: a highly efficient electrocatalyst for hydrogen evolution reaction in alkaline solutions
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.05.099
– volume: 56
  start-page: 5731
  year: 2011
  ident: 10.1016/j.jelechem.2019.113795_bb0235
  article-title: Electrodeposition of CdS from acidic aqueous thiosulfate solution—invesitigation of the mechanism by electrochemical quartz microbalance technique
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.04.046
– volume: 3
  start-page: 23207
  year: 2015
  ident: 10.1016/j.jelechem.2019.113795_bb0220
  article-title: A Fe-doped Ni3S2 particle film as a high-efficiency robust oxygen evolution electrode with very high current density
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA06788J
– volume: 29
  start-page: 1605838
  year: 2017
  ident: 10.1016/j.jelechem.2019.113795_bb0050
  article-title: Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605838
– volume: 270
  start-page: 398
  year: 2019
  ident: 10.1016/j.jelechem.2019.113795_bb0125
  article-title: In situ hydrothermal growth of metallic Co9S8-Ni3S2 nanoarrays on nickel foam as bifunctional electrocatalysts for hydrogen and oxygen evolution reactions
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2018.12.004
– volume: 258
  year: 2019
  ident: 10.1016/j.jelechem.2019.113795_bb0245
  article-title: Insight into the excellent catalytic activity of (CoMo)S2/graphene for hydrogen evolution reaction
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118012
– volume: 427
  start-page: 267
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0240
  article-title: Electrodeposition mechanism of quaternary compounds Cu2ZnSnS4: effect of the additives
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.07.119
– volume: 8
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0205
  article-title: Theoretical and experimental insight into the effect of nitrogen doping on hydrogen evolution activity of Ni3S2 in alkaline medium
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703538
– volume: 8
  start-page: 3895
  year: 2018
  ident: 10.1016/j.jelechem.2019.113795_bb0010
  article-title: Bioinspired engineering of cobalt-phosphonate nanosheets for robust hydrogen evolution reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b04276
– volume: 299
  start-page: 405
  year: 2019
  ident: 10.1016/j.jelechem.2019.113795_bb0155
  article-title: Samarium oxide modified Ni-Co nanosheets based three-dimensional honeycomb film on nickel foam: a highly efficient electrocatalyst for hydrogen evolution reaction
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.12.169
– volume: 139
  start-page: 12370
  year: 2017
  ident: 10.1016/j.jelechem.2019.113795_bb0055
  article-title: Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06337
– volume: 13
  year: 2017
  ident: 10.1016/j.jelechem.2019.113795_bb0195
  article-title: Incorporating nitrogen-doped graphene quantum dots and Ni3S2 nanosheets: a synergistic electrocatalyst with highly enhanced activity for overall water splitting
  publication-title: Small
  doi: 10.1002/smll.201700264
– volume: 786
  start-page: 8
  year: 2017
  ident: 10.1016/j.jelechem.2019.113795_bb0230
  article-title: The plume-like Ni3S2 supercapacitor electrodes formed on nickel foam by catalysis of thermal reduced graphene oxide
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2017.01.004
SSID ssj0028812
Score 2.4252925
Snippet Low-cost transition metal sulfides are considered as one kind of the most promising catalysts for the electrochemical water-splitting. In this work, a facile...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113795
SubjectTerms Catalytic activity
Electrocatalysts
Electron conductivity
Graphene
Hydrogen evolution reaction
Hydrogen evolution reactions
Metal foams
Metal sulfides
Nickel foam
Nickel sulfide
Noble metals
Oxygen evolution reaction
Oxygen evolution reactions
Reduced oxide graphene
Tafel slopes
Transition metals
Water splitting
Title 3D porous and self-supporting Ni foam@graphene@Ni3S2 as a bifunctional electrocatalyst for overall water splitting in alkaline solution
URI https://dx.doi.org/10.1016/j.jelechem.2019.113795
https://www.proquest.com/docview/2376944504
Volume 858
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQPZQL6gPEq8iHXsPm4Ud8A21BW1bdQwGxN8uxY5ElZFebRRUXrv3bnckDFYTEgUsiRXaUeOyZb-yZ-Qj5noHZy0UI2s9wETCrskDx2ATgXmcsAwAgGq7DXxMxumLnUz5dI8M-FwbDKjvd3-r0Rlt3TwbdaA4WRTG4iLiM8dwAIAj4NckUM9iZxPr5R49PYR5xmrYnntA4wNb_ZQnPjmbINXOTY0Z6pJDeRCLPxOsG6oWqbuzP2Sey2QFHetJ-22eylldfyMdhz9f2lfxNflAA0-DJU1M5WuelD-r7BeJrME90UlA_N3fHTYVqUHDHkyK5iKmB1jQr0Ly1u4K0I8Zp9nUe6hX0WlKM8zRlSf8AMl3SGoBrEy5Ni4qa8tYgVKX9JN4iV2enl8NR0NEsBDZh4SrInVQxrl7PQyssSz1nxkS5dMxyuCTex2FqQyZDnwimvGSAMrhXNjKpy2SyTdareZXvEGojYUMAOODTJYy7NDVSuMi5UMWRcDLbJbwfW227GuRIhVHqPthspnuZaJSJbmWySwZP_RZtFY43e6hedPrZfNJgKt7se9DLWncrutYYPaQY_Dnbe8er98lGjA57E_Z9QNZXy_v8G6CaVXbYTNtD8uHk53g0wfv49_X4H_Te-bI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoHOgFtbRVebT1gWvYJH7FN6otaMtjL4C0N8uxYzXbNKw2i1AvvfK3mckDQVWJQy85RB4r8YxnvrHH_gg5yCHsFTIG72eFjLjTeaRFaiNIr3OeAwCQLdfhxVROrvnpTMzWyHg4C4Nllb3v73x66637N6N-NEeLshxdJkKluG8AEATyGjZ7RTa4YApN-_DPY51HmmXdlie0jrD5k2PC88M5ks38KPBIeqKR30Qh0cS_I9RfvroNQCdvyFaPHOnX7uPekrWi3iab44Gw7R25Z98ooGlI5amtPW2KKkTN7QIBNsQnOi1puLG_jtorqsHDHU1LdplSC61pXmJ865YFac-M0y7s_G5WILWkWOhpq4reATRd0gaQa1svTcua2uqnRaxKByt-T65Pjq_Gk6jnWYgc4_EqKrzSKU7fIGInHc-C4NYmhfLcCXiwENI4czFXcWCS66A4wAwRtEts5nPFPpD1-qYuPhLqEuliQDiQ1DEufJZZJX3ifazTRHqV7xAxjK1x_SXkyIVRmaHabG4GnRjUiel0skNGj3KL7hqOFyX0oDrzzKAMxIoXZfcHXZt-SjcGy4c0hz_nu__R9ReyObm6ODfn36dne-R1itl7WwO-T9ZXy9viE0CcVf65NeEH6fn5pQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+porous+and+self-supporting+Ni+foam%40graphene%40Ni3S2+as+a+bifunctional+electrocatalyst+for+overall+water+splitting+in+alkaline+solution&rft.jtitle=Journal+of+electroanalytical+chemistry+%28Lausanne%2C+Switzerland%29&rft.au=Jin%2C+Chenglong&rft.au=Zhou%2C+Nan&rft.au=Wang%2C+Yilong&rft.au=Li%2C+Xi&rft.date=2020-02-01&rft.pub=Elsevier+B.V&rft.issn=1572-6657&rft.eissn=1873-2569&rft.volume=858&rft_id=info:doi/10.1016%2Fj.jelechem.2019.113795&rft.externalDocID=S157266571931063X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-6657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-6657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-6657&client=summon