3D porous and self-supporting Ni foam@graphene@Ni3S2 as a bifunctional electrocatalyst for overall water splitting in alkaline solution
Low-cost transition metal sulfides are considered as one kind of the most promising catalysts for the electrochemical water-splitting. In this work, a facile electrochemical method was employed to directly deposit Ni3S2 on Ni foam (NF) decorated with graphene (G) for the construction of a self-suppo...
Saved in:
Published in | Journal of electroanalytical chemistry (Lausanne, Switzerland) Vol. 858; p. 113795 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.02.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1572-6657 1873-2569 |
DOI | 10.1016/j.jelechem.2019.113795 |
Cover
Loading…
Abstract | Low-cost transition metal sulfides are considered as one kind of the most promising catalysts for the electrochemical water-splitting. In this work, a facile electrochemical method was employed to directly deposit Ni3S2 on Ni foam (NF) decorated with graphene (G) for the construction of a self-supporting electrocatalyst NF@G@Ni3S2 with a 3D porous structure. Due to the intrinsic catalytic activity and continuous NiNi network of Ni3S2, 3D porous structure of NF and the excellent electron conductivity of the graphene as well as their synergistic effects, NF@G-5@Ni3S2 exhibited an excellent electrocatalytic performance. In the alkaline solution, the low overpotentials of 119 and 249 mV were required to reach a current density of 10 mA cm−2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. And the Tafel slopes were only 64.8 and 98.2 mV dec−1 for HER and OER, respectively. Remarkably, by employing NF@G-5@Ni3S2 as both anode and cathode for full water splitting, a very low cell voltage of 1.62 V was needed to reach 10 mA cm−2. Moreover, NF@G-5@Ni3S2 also showed an excellent stability for all HER, OER and overall water-splitting, demonstrating a potential prospect of NF@G-5@Ni3S2 for the practical application. Our work opens up a new direction for the development of non-noble metal electrocatalysts.
[Display omitted]
•3D porous and self-supporting NF@G@Ni3S2 was constructed by facile electrodeposition.•NF@G-5@Ni3S2 had excellent electrocatalytic performance for HER, OER and water splitting.•NF@G-5@Ni3S2 as anode and cathode for water splitting, only 1.62 V was needed to reach 10 mA cm−2.•NiNi network of Ni3S2, 3D porous structure of NF and excellent electron conductivity of graphene benefits electrocatalysis. |
---|---|
AbstractList | Low-cost transition metal sulfides are considered as one kind of the most promising catalysts for the electrochemical water-splitting. In this work, a facile electrochemical method was employed to directly deposit Ni3S2 on Ni foam (NF) decorated with graphene (G) for the construction of a self-supporting electrocatalyst NF@G@Ni3S2 with a 3D porous structure. Due to the intrinsic catalytic activity and continuous NiNi network of Ni3S2, 3D porous structure of NF and the excellent electron conductivity of the graphene as well as their synergistic effects, NF@G-5@Ni3S2 exhibited an excellent electrocatalytic performance. In the alkaline solution, the low overpotentials of 119 and 249 mV were required to reach a current density of 10 mA cm−2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. And the Tafel slopes were only 64.8 and 98.2 mV dec−1 for HER and OER, respectively. Remarkably, by employing NF@G-5@Ni3S2 as both anode and cathode for full water splitting, a very low cell voltage of 1.62 V was needed to reach 10 mA cm−2. Moreover, NF@G-5@Ni3S2 also showed an excellent stability for all HER, OER and overall water-splitting, demonstrating a potential prospect of NF@G-5@Ni3S2 for the practical application. Our work opens up a new direction for the development of non-noble metal electrocatalysts.
[Display omitted]
•3D porous and self-supporting NF@G@Ni3S2 was constructed by facile electrodeposition.•NF@G-5@Ni3S2 had excellent electrocatalytic performance for HER, OER and water splitting.•NF@G-5@Ni3S2 as anode and cathode for water splitting, only 1.62 V was needed to reach 10 mA cm−2.•NiNi network of Ni3S2, 3D porous structure of NF and excellent electron conductivity of graphene benefits electrocatalysis. Low-cost transition metal sulfides are considered as one kind of the most promising catalysts for the electrochemical water-splitting. In this work, a facile electrochemical method was employed to directly deposit Ni3S2 on Ni foam (NF) decorated with graphene (G) for the construction of a self-supporting electrocatalyst NF@G@Ni3S2 with a 3D porous structure. Due to the intrinsic catalytic activity and continuous NiNi network of Ni3S2, 3D porous structure of NF and the excellent electron conductivity of the graphene as well as their synergistic effects, NF@G-5@Ni3S2 exhibited an excellent electrocatalytic performance. In the alkaline solution, the low overpotentials of 119 and 249 mV were required to reach a current density of 10 mA cm−2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. And the Tafel slopes were only 64.8 and 98.2 mV dec−1 for HER and OER, respectively. Remarkably, by employing NF@G-5@Ni3S2 as both anode and cathode for full water splitting, a very low cell voltage of 1.62 V was needed to reach 10 mA cm−2. Moreover, NF@G-5@Ni3S2 also showed an excellent stability for all HER, OER and overall water-splitting, demonstrating a potential prospect of NF@G-5@Ni3S2 for the practical application. Our work opens up a new direction for the development of non-noble metal electrocatalysts. |
ArticleNumber | 113795 |
Author | Wang, Yilong Chen, Ming Xie, Zhizhong Liang, Yani Jin, Chenglong Dong, Yongzhi Qu, Deyu Yu, Zhengsong Zhou, Nan Zhang, Chaocan Li, Xi Dong, Yulin |
Author_xml | – sequence: 1 givenname: Chenglong surname: Jin fullname: Jin, Chenglong organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 2 givenname: Nan surname: Zhou fullname: Zhou, Nan organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 3 givenname: Yilong surname: Wang fullname: Wang, Yilong organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 4 givenname: Xi surname: Li fullname: Li, Xi email: chemlixi@whut.edu.cn organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 5 givenname: Ming surname: Chen fullname: Chen, Ming organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 6 givenname: Yongzhi surname: Dong fullname: Dong, Yongzhi organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 7 givenname: Zhengsong surname: Yu fullname: Yu, Zhengsong organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 8 givenname: Yani surname: Liang fullname: Liang, Yani organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 9 givenname: Deyu orcidid: 0000-0001-8514-2646 surname: Qu fullname: Qu, Deyu organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 10 givenname: Yulin surname: Dong fullname: Dong, Yulin organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 11 givenname: Zhizhong surname: Xie fullname: Xie, Zhizhong organization: School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 12 givenname: Chaocan surname: Zhang fullname: Zhang, Chaocan email: polymers@whut.edu.cn organization: School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China |
BookMark | eNqFkE1vFSEUholpE_vhXzAkrucKAwwziYtram1NmnahrgmXObSMXBiBqekv8G_LeHXTTTdAyPu8Oec5RUchBkDoLSUbSmj3ftpM4ME8wH7TEjpsKGVyEK_QCe0la1rRDUf1LWTbdJ2Qr9FpzhMhbd_T9gT9Zp_wHFNcMtZhxBm8bfIy16_iwj2-ddhGvd_eJz0_QIDtrWNfW6xrGu-cXYIpLgbt8TpBSdHoov1TLpVKOD5C0t7jX7pAwnn2rvwtdQFr_0N7FwDn6Je14hwdW-0zvPl3n6Hvny-_XVw3N3dXXy4-3jSGcVIaGOXQ7gjhVhDTGd5bwbWmIEduRD2YtS3pDeGSWNbxwUouyCDsYKjux51kZ-jdoXdO8ecCuagpLqlukFXLZDfwmuc19eGQMinmnMAq44pe5yxJO68oUat6Nan_6tWqXh3UV7x7hs_J7XV6ehncHkCoCh4dJJWNg2BgdKn6VWN0L1X8AWs1pnI |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2022_03_014 crossref_primary_10_1007_s10800_022_01679_w crossref_primary_10_1039_D1TA01267C crossref_primary_10_1039_D1SE01708J crossref_primary_10_1021_acs_jpcc_4c02187 crossref_primary_10_1016_j_jcis_2021_07_101 crossref_primary_10_1016_j_ijhydene_2023_04_023 crossref_primary_10_1021_acs_inorgchem_4c03664 crossref_primary_10_1002_smll_202005255 crossref_primary_10_1016_j_ijhydene_2024_03_045 crossref_primary_10_1016_j_jallcom_2025_179912 crossref_primary_10_1016_j_mcat_2024_114197 crossref_primary_10_1016_j_jechem_2020_05_026 crossref_primary_10_1016_j_jelechem_2022_116014 crossref_primary_10_1149_1945_7111_ac6e91 crossref_primary_10_1016_j_jelechem_2022_116037 crossref_primary_10_3390_coatings13101816 crossref_primary_10_1016_j_jallcom_2024_173894 crossref_primary_10_1016_j_jelechem_2022_116216 crossref_primary_10_1016_j_ijhydene_2022_10_199 |
Cites_doi | 10.1021/acsami.8b00211 10.1007/s12274-017-1754-5 10.1021/acsnano.7b08724 10.1016/j.mtener.2018.09.004 10.1016/j.ijhydene.2018.03.110 10.1016/j.jelechem.2018.11.031 10.1021/acsami.7b09634 10.1016/j.energy.2016.11.053 10.1039/C7TA00743D 10.1002/advs.201700733 10.1021/acsami.6b13244 10.1016/j.jpowsour.2018.08.088 10.1016/j.pecs.2009.11.002 10.1021/acsami.8b00813 10.1016/j.apcatb.2018.09.064 10.1021/ja01539a017 10.1039/C8RA01764F 10.1016/j.ijhydene.2015.10.142 10.1021/acsami.7b14506 10.1039/C7CC06668F 10.1016/j.jpowsour.2014.07.188 10.1002/aenm.201402031 10.1039/C7TA03039H 10.1039/C8TA01552J 10.1021/jacs.7b08521 10.1039/C8TA01061G 10.1016/j.nanoen.2018.03.012 10.1039/C8TA07162D 10.1016/j.apcatb.2014.02.017 10.1016/j.ijhydene.2018.02.013 10.1021/acsenergylett.8b00066 10.1016/j.cej.2019.122603 10.1039/C8EE00076J 10.1016/j.apsusc.2016.12.042 10.1016/j.electacta.2013.10.140 10.1016/j.jallcom.2017.10.194 10.1039/C6TA10303K 10.1039/C7TA10977F 10.1039/C7TA04893A 10.1016/j.ijhydene.2019.06.196 10.1016/j.apsusc.2018.02.076 10.1016/j.electacta.2017.05.099 10.1016/j.electacta.2011.04.046 10.1039/C5TA06788J 10.1002/adma.201605838 10.1016/j.jssc.2018.12.004 10.1016/j.apcatb.2019.118012 10.1016/j.apsusc.2017.07.119 10.1002/aenm.201703538 10.1021/acscatal.7b04276 10.1016/j.electacta.2018.12.169 10.1021/jacs.7b06337 10.1002/smll.201700264 10.1016/j.jelechem.2017.01.004 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier Science Ltd. Feb 1, 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Feb 1, 2020 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.jelechem.2019.113795 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-2569 |
ExternalDocumentID | 10_1016_j_jelechem_2019_113795 S157266571931063X |
GroupedDBID | --K --M -~X .~1 1B1 1RT 1~. 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M23 M2Z M41 MO0 N9A NQ- O-L OAUVE OZT P-8 P-9 P2P PC. Q38 RNS RPZ SCB SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT YQT ~02 186 29K AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I EJD FEDTE FGOYB HMU HVGLF HZ~ R2- RIG ROL SCH SEW SSH WUQ 7SR 8BQ 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c340t-ed792b004f50c6c48f54aa1e7d4c57d43ff208c0470f3649f745095f9c1a8db73 |
IEDL.DBID | .~1 |
ISSN | 1572-6657 |
IngestDate | Sun Sep 07 03:45:07 EDT 2025 Thu Apr 24 23:02:25 EDT 2025 Tue Jul 01 00:22:18 EDT 2025 Fri Feb 23 02:47:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hydrogen evolution reaction Water splitting Reduced oxide graphene Oxygen evolution reaction Nickel foam Nickel sulfide |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-ed792b004f50c6c48f54aa1e7d4c57d43ff208c0470f3649f745095f9c1a8db73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8514-2646 |
PQID | 2376944504 |
PQPubID | 2047557 |
ParticipantIDs | proquest_journals_2376944504 crossref_citationtrail_10_1016_j_jelechem_2019_113795 crossref_primary_10_1016_j_jelechem_2019_113795 elsevier_sciencedirect_doi_10_1016_j_jelechem_2019_113795 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 2020-02-00 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of electroanalytical chemistry (Lausanne, Switzerland) |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Mahale, Ingle (bb0100) 2017; 119 Sha, Ye, Yin, Zhu, Cheng, Yan, Wang, Cao (bb0170) 2020; 381 Kou, Smart, Yao, Chen, Thota, Ping, Li (bb0205) 2018; 8 Yuan, Pan, Li, Jiang (bb0160) 2019; 44 Zhang, Li, Yang, Fa, Ge (bb0260) 2018; 732 Hu, Feng, Nai, Zhao, Hu, Lou (bb0040) 2018; 11 Zeng, Zhang (bb0005) 2010; 36 Liu, Xie, Liu, Du, Asiri, Sun (bb0180) 2017; 53 Shervedani, Torabi, Yaghoobi (bb0085) 2017; 244 Zarębska, Skompska (bb0235) 2011; 56 Gonzalezbuch, Herraizcardona, Ortega, Mestre, Perezherranz (bb0095) 2016; 41 Zhou, Weng, Popov, Yang, Antipina, Sorokin, Wang, Bando, Golberg (bb0035) 2018; 12 Tang, Li, Wang, Dou, Liu, Ji, Song (bb0240) 2018; 427 Lv, Miura, Meng, Liang (bb0145) 2017; 399 Cheng, Liu, Asiri, Xing, Sun (bb0220) 2015; 3 Zhou, Xi, Yang, Wu (bb0125) 2019; 270 Diao, Qin, Zhao, Shi, Liu, He, Ma, Li, He (bb0025) 2018; 6 Chen, Chen, Zhang, Yang, Jiang (bb0245) 2019; 258 Wei, Xi, Chen, Guo, Ding, Yang, Wang, Li, Huang (bb0265) 2018; 5 Ho, Bae, Nam, Kim, Lee, Park, Shin (bb0130) 2018; 10 Zhang, Yang, Ziaee, Lu, Wang (bb0015) 2018; 10 Pierozynski, Mikolajczyk, Kowalski (bb0090) 2014; 271 Lin, Liu, Dai (bb0150) 2014; 154 Lu, Song, Dou, Ji, Wang (bb0105) 2018; 43 Chen, Yu, Chen, Liu, Li, Zhu, Tao, Li, Liu, Shen, Li, Huang, Wang, Asefa, Zou (bb0055) 2017; 139 Xu, Jiang, Zhang, Hu, Li (bb0110) 2019; 242 Lv, Liang, Yang, Suzuki, Miura (bb0230) 2017; 786 Liu, Sun, Zhang, Wang, Wang, Wu, Zhang, Zhao (bb0185) 2018; 6 Hu, Zhang, Meng, Lin, Hu, Long, Yang (bb0070) 2017; 5 Qu, Yang, Chai, Tang, Shao, Kwok, Yang, Wang, Chua, Wang, Lu, Pan (bb0215) 2017; 9 Boobphahom, Rattanawaleedirojn, Boonyongmaneerat, Rengpipat, Chailapakul, Rodthongkum (bb0165) 2019; 833 Shim, Hong, Yang, Choi (bb0075) 2017; 5 Wang, Wu, Sun, Ma, Shen, Li, Zheng (bb0115) 2018; 10 Dong, Zhang, Dai, Wang, Zhao, Shao, Huang, Dong (bb0135) 2018; 11 Yu, Li, Xu, Chen, Li, Liu, Zhen, Dravid, Wu (bb0270) 2017; 5 Wu, Liu, Wang, Su, Yan, Ng, Li, Wei (bb0250) 2018; 441 Tiwari, Azam, Novak, Prakash, Jeon (bb0255) 2018; 6 Min, Zhao, Chen, Qian (bb0190) 2014; 115 Feng, Wu, Tong, Li (bb0120) 2018; 140 Lv, Zhao, Fang, Jiang, Li, Ma, Zhu (bb0195) 2017; 13 Lin, Wang, Zheng, Du, Zhao, Qi, Cao, Fei, Feng (bb0140) 2018; 401 Jiang, Liu, Zeng, Ai (bb0060) 2017; 5 Hummers, Offeman (bb0175) 1958; 80 Cai, Shi, Bao, Shen, Xia, Zheng (bb0010) 2018; 8 Peng, Jia, Alenizi, Elzatahry, Zheng (bb0200) 2015; 5 Tian, Lei, Wang (bb0210) 2017; 9 Wang, Zheng, Yu, Wang, Hou, Zhang, Chen (bb0030) 2018; 6 Guo, Tang, Wang, Kang, Bando, Yamauchi (bb0045) 2018; 47 Zhang, Liu, Sun, Xi, Peng, Gao, Xue (bb0065) 2018; 3 Meng, Zhang, Ma, Zhang, Tang, Li, Wang (bb0020) 2018; 10 Wang, Xu, Jin, Chen, Wang (bb0050) 2017; 29 Liao, Zhu, Xie, Zeng, Yi, Cheng, Kuang, Deng, Cao (bb0225) 2018; 8 Tasci, Yuksel, Solmaz (bb0080) 2018; 43 Liu, Zeng, He, Dong, He, Zhang, Wang, Li, Liu, Jia (bb0155) 2019; 299 Wang (10.1016/j.jelechem.2019.113795_bb0030) 2018; 6 Jiang (10.1016/j.jelechem.2019.113795_bb0060) 2017; 5 Wang (10.1016/j.jelechem.2019.113795_bb0050) 2017; 29 Guo (10.1016/j.jelechem.2019.113795_bb0045) 2018; 47 Tang (10.1016/j.jelechem.2019.113795_bb0240) 2018; 427 Lu (10.1016/j.jelechem.2019.113795_bb0105) 2018; 43 Cheng (10.1016/j.jelechem.2019.113795_bb0220) 2015; 3 Zhou (10.1016/j.jelechem.2019.113795_bb0125) 2019; 270 Xu (10.1016/j.jelechem.2019.113795_bb0110) 2019; 242 Qu (10.1016/j.jelechem.2019.113795_bb0215) 2017; 9 Lin (10.1016/j.jelechem.2019.113795_bb0140) 2018; 401 Feng (10.1016/j.jelechem.2019.113795_bb0120) 2018; 140 Yuan (10.1016/j.jelechem.2019.113795_bb0160) 2019; 44 Meng (10.1016/j.jelechem.2019.113795_bb0020) 2018; 10 Pierozynski (10.1016/j.jelechem.2019.113795_bb0090) 2014; 271 Wang (10.1016/j.jelechem.2019.113795_bb0115) 2018; 10 Boobphahom (10.1016/j.jelechem.2019.113795_bb0165) 2019; 833 Lin (10.1016/j.jelechem.2019.113795_bb0150) 2014; 154 Hummers (10.1016/j.jelechem.2019.113795_bb0175) 1958; 80 Chen (10.1016/j.jelechem.2019.113795_bb0055) 2017; 139 Yu (10.1016/j.jelechem.2019.113795_bb0270) 2017; 5 Cai (10.1016/j.jelechem.2019.113795_bb0010) 2018; 8 Hu (10.1016/j.jelechem.2019.113795_bb0040) 2018; 11 Shervedani (10.1016/j.jelechem.2019.113795_bb0085) 2017; 244 Sha (10.1016/j.jelechem.2019.113795_bb0170) 2020; 381 Gonzalezbuch (10.1016/j.jelechem.2019.113795_bb0095) 2016; 41 Tiwari (10.1016/j.jelechem.2019.113795_bb0255) 2018; 6 Liu (10.1016/j.jelechem.2019.113795_bb0155) 2019; 299 Tasci (10.1016/j.jelechem.2019.113795_bb0080) 2018; 43 Lv (10.1016/j.jelechem.2019.113795_bb0145) 2017; 399 Ho (10.1016/j.jelechem.2019.113795_bb0130) 2018; 10 Zhang (10.1016/j.jelechem.2019.113795_bb0015) 2018; 10 Lv (10.1016/j.jelechem.2019.113795_bb0195) 2017; 13 Mahale (10.1016/j.jelechem.2019.113795_bb0100) 2017; 119 Zeng (10.1016/j.jelechem.2019.113795_bb0005) 2010; 36 Liu (10.1016/j.jelechem.2019.113795_bb0180) 2017; 53 Wu (10.1016/j.jelechem.2019.113795_bb0250) 2018; 441 Liu (10.1016/j.jelechem.2019.113795_bb0185) 2018; 6 Zarębska (10.1016/j.jelechem.2019.113795_bb0235) 2011; 56 Zhang (10.1016/j.jelechem.2019.113795_bb0065) 2018; 3 Shim (10.1016/j.jelechem.2019.113795_bb0075) 2017; 5 Wei (10.1016/j.jelechem.2019.113795_bb0265) 2018; 5 Kou (10.1016/j.jelechem.2019.113795_bb0205) 2018; 8 Liao (10.1016/j.jelechem.2019.113795_bb0225) 2018; 8 Min (10.1016/j.jelechem.2019.113795_bb0190) 2014; 115 Chen (10.1016/j.jelechem.2019.113795_bb0245) 2019; 258 Zhou (10.1016/j.jelechem.2019.113795_bb0035) 2018; 12 Dong (10.1016/j.jelechem.2019.113795_bb0135) 2018; 11 Tian (10.1016/j.jelechem.2019.113795_bb0210) 2017; 9 Zhang (10.1016/j.jelechem.2019.113795_bb0260) 2018; 732 Peng (10.1016/j.jelechem.2019.113795_bb0200) 2015; 5 Lv (10.1016/j.jelechem.2019.113795_bb0230) 2017; 786 Diao (10.1016/j.jelechem.2019.113795_bb0025) 2018; 6 Hu (10.1016/j.jelechem.2019.113795_bb0070) 2017; 5 |
References_xml | – volume: 786 start-page: 8 year: 2017 end-page: 13 ident: bb0230 article-title: The plume-like Ni publication-title: J. Electroanal. Chem. – volume: 258 year: 2019 ident: bb0245 article-title: Insight into the excellent catalytic activity of (CoMo)S publication-title: Appl. Catal., B – volume: 119 start-page: 872 year: 2017 end-page: 878 ident: bb0100 article-title: Electrocatalytic hydrogen evolution reaction on nano-nickel decorated graphene electrode publication-title: Energy – volume: 299 start-page: 405 year: 2019 end-page: 414 ident: bb0155 article-title: Samarium oxide modified Ni-Co nanosheets based three-dimensional honeycomb film on nickel foam: a highly efficient electrocatalyst for hydrogen evolution reaction publication-title: Electrochim. Acta – volume: 9 start-page: 5959 year: 2017 end-page: 5967 ident: bb0215 article-title: Facile synthesis of vanadium-doped Ni publication-title: ACS Appl. Mater. Interfaces – volume: 381 year: 2020 ident: bb0170 article-title: In situ grown 3D hierarchical MnCo publication-title: Chem. Eng. J. – volume: 44 start-page: 22947 year: 2019 end-page: 22954 ident: bb0160 article-title: Three-dimensional Ni foam supported pristine graphene as a superior oxygen evolution electrode publication-title: Int. J. Hydrog. Energy – volume: 10 start-page: 2430 year: 2018 end-page: 2441 ident: bb0020 article-title: Self-supported ternary Ni-S-Se nanorod arrays as highly active electrocatalyst for hydrogen generation in both acidic and basic media: experimental investigation and DFT calculation publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 10580 year: 2018 end-page: 10585 ident: bb0080 article-title: Three-dimensional nickel nanodomes: efficient electrocatalysts for water splitting publication-title: Int. J. Hydrog. Energy – volume: 833 start-page: 133 year: 2019 end-page: 142 ident: bb0165 article-title: TiO publication-title: J. Electroanal. Chem. – volume: 10 start-page: 9460 year: 2018 end-page: 9467 ident: bb0015 article-title: Nanohybrid of carbon quantum dots/molybdenum phosphide nanoparticle for efficient electrochemical hydrogen evolution in alkaline medium publication-title: ACS Appl. Mater. Interfaces – volume: 154 start-page: 213 year: 2014 end-page: 220 ident: bb0150 article-title: Ni publication-title: Appl. Catal. B Environ. – volume: 29 start-page: 1605838 year: 2017 ident: bb0050 article-title: Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications publication-title: Adv. Mater. – volume: 56 start-page: 5731 year: 2011 end-page: 5739 ident: bb0235 article-title: Electrodeposition of CdS from acidic aqueous thiosulfate solution—invesitigation of the mechanism by electrochemical quartz microbalance technique publication-title: Electrochim. Acta – volume: 12 start-page: 4148 year: 2018 end-page: 4155 ident: bb0035 article-title: Construction of polarized carbon-nickel catalytic surfaces for potent, durable and economic hydrogen evolution reactions publication-title: ACS Nano – volume: 11 start-page: 1389 year: 2018 end-page: 1398 ident: bb0135 article-title: Graphene as an intermediary for enhancing the electron transfer rate: a free-standing Ni publication-title: Nano Res. – volume: 115 start-page: 155 year: 2014 end-page: 164 ident: bb0190 article-title: One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH) publication-title: Electrochim. Acta – volume: 6 start-page: 6054 year: 2018 end-page: 6064 ident: bb0025 article-title: “Ethanol–water exchange” nanobubbles templated hierarchical hollow β-Mo publication-title: J. Mater. Chem. A – volume: 11 start-page: 872 year: 2018 end-page: 880 ident: bb0040 article-title: Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting publication-title: Energy Environ. Sci. – volume: 43 start-page: 8794 year: 2018 end-page: 8804 ident: bb0105 article-title: Self-supported Ni publication-title: Int. J. Hydrog. Energy – volume: 6 start-page: 19201 year: 2018 end-page: 19209 ident: bb0185 article-title: Vapor-phase hydrothermal transformation of a nanosheet array structure Ni(OH) publication-title: J. Mater. Chem. A – volume: 5 year: 2015 ident: bb0200 article-title: Electrocatalysts: from water oxidation to reduction: homologous Ni–Co based nanowires as complementary water splitting electrocatalysts publication-title: Adv. Energy Mater. – volume: 5 start-page: 16929 year: 2017 end-page: 16935 ident: bb0060 article-title: Cobalt/molybdenum carbide@N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions publication-title: J. Mater. Chem. A – volume: 3 start-page: 23207 year: 2015 end-page: 23212 ident: bb0220 article-title: A Fe-doped Ni publication-title: J. Mater. Chem. A – volume: 5 start-page: 14950 year: 2017 end-page: 14968 ident: bb0075 article-title: Tuning the catalytic functionality of transition metal dichalcogenides grown by chemical vapour deposition publication-title: J. Mater. Chem. A – volume: 80 start-page: 1339 year: 1958 ident: bb0175 article-title: Preparation of graphitic oxide publication-title: J. Am. Chem. Soc. – volume: 36 start-page: 307 year: 2010 end-page: 326 ident: bb0005 article-title: Recent progress in alkaline water electrolysis for hydrogen production and applications publication-title: Prog. Energ. Combust. – volume: 3 start-page: 779 year: 2018 end-page: 786 ident: bb0065 article-title: Accelerated hydrogen evolution reaction in CoS publication-title: ACS Energy Lett – volume: 53 start-page: 12446 year: 2017 end-page: 12449 ident: bb0180 article-title: A Zn-doped Ni publication-title: Chem. Commun. – volume: 399 start-page: 769 year: 2017 end-page: 774 ident: bb0145 article-title: Synthesis of Ni publication-title: Appl. Surf. Sci. – volume: 8 start-page: 3895 year: 2018 end-page: 3902 ident: bb0010 article-title: Bioinspired engineering of cobalt-phosphonate nanosheets for robust hydrogen evolution reaction publication-title: ACS Catal. – volume: 5 start-page: 1700733 year: 2018 ident: bb0265 article-title: Molybdenum carbide nanoparticles coated into the graphene wrapping N-doped porous carbon microspheres for highly efficient electrocatalytic hydrogen evolution both in acidic and alkaline media publication-title: Adv. Sci. – volume: 401 start-page: 329 year: 2018 end-page: 335 ident: bb0140 article-title: Controllable synthesis of core-branch Ni publication-title: J. Power Sources – volume: 244 start-page: 230 year: 2017 end-page: 238 ident: bb0085 article-title: Binder-free prickly nickel nanostructured/reduced graphene oxide composite: a highly efficient electrocatalyst for hydrogen evolution reaction in alkaline solutions publication-title: Electrochim. Acta – volume: 6 start-page: 7842 year: 2018 end-page: 7850 ident: bb0030 article-title: In situ synthesis of hierarchical MoSe publication-title: J. Mater. Chem. A – volume: 10 start-page: 12807 year: 2018 end-page: 12815 ident: bb0130 article-title: Metallic Ni publication-title: ACS Appl. Mater. Interfaces – volume: 270 start-page: 398 year: 2019 end-page: 406 ident: bb0125 article-title: In situ hydrothermal growth of metallic Co publication-title: J. Solid State Chem. – volume: 427 start-page: 267 year: 2018 end-page: 275 ident: bb0240 article-title: Electrodeposition mechanism of quaternary compounds Cu publication-title: Appl. Surf. Sci. – volume: 441 start-page: 1024 year: 2018 end-page: 1033 ident: bb0250 article-title: 3D structured Mo-doped Ni publication-title: Appl. Surf. Sci. – volume: 47 start-page: 494 year: 2018 end-page: 502 ident: bb0045 article-title: Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting publication-title: Nano Energy – volume: 5 start-page: 5995 year: 2017 end-page: 6012 ident: bb0070 article-title: Hydrogen evolution electrocatalysis with binary-nonmetal transition metal compounds publication-title: J. Mater. Chem. A – volume: 139 start-page: 12370 year: 2017 end-page: 12373 ident: bb0055 article-title: Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 764 year: 2016 end-page: 772 ident: bb0095 article-title: Synthesis and characterization of Au-modified macroporous Ni electrocatalysts for alkaline water electrolysis publication-title: Int. J. Hydrog. Energy – volume: 9 start-page: 40162 year: 2017 end-page: 40170 ident: bb0210 article-title: Polyoxometalate-surfactant hybrids directed assembly of Ni publication-title: ACS Appl. Mater. Interfaces – volume: 732 start-page: 248 year: 2018 end-page: 256 ident: bb0260 article-title: High-efficiency and stable alloyed nickel based electrodes for hydrogen evolution by seawater splitting publication-title: J. Alloys Compd. – volume: 271 start-page: 231 year: 2014 end-page: 238 ident: bb0090 article-title: Hydrogen evolution at catalytically-modified nickel foam in alkaline solution publication-title: J. Power Sources – volume: 6 start-page: 7786 year: 2018 end-page: 7793 ident: bb0255 article-title: Chemical strain formation through anion substitution in Cu publication-title: J. Mater. Chem. A – volume: 13 year: 2017 ident: bb0195 article-title: Incorporating nitrogen-doped graphene quantum dots and Ni publication-title: Small – volume: 10 start-page: 214 year: 2018 end-page: 221 ident: bb0115 article-title: Hierarchical MoS publication-title: Mater. Today Energy – volume: 8 year: 2018 ident: bb0205 article-title: Theoretical and experimental insight into the effect of nitrogen doping on hydrogen evolution activity of Ni publication-title: Adv. Energy Mater. – volume: 5 start-page: 3981 year: 2017 end-page: 9986 ident: bb0270 article-title: NiSe publication-title: J. Mater. Chem. A – volume: 140 start-page: 610 year: 2018 end-page: 617 ident: bb0120 article-title: Efficient hydrogen evolution on Cu nanodots-decorated Ni publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 15315 year: 2018 end-page: 15325 ident: bb0225 article-title: Solvent-assisted thermal reduction of microcrystalline graphene oxide with excellent microwave absorption performance publication-title: RSC Adv. – volume: 242 start-page: 60 year: 2019 end-page: 66 ident: bb0110 article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH) publication-title: Appl. Catal. B Environ. – volume: 10 start-page: 9460 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0015 article-title: Nanohybrid of carbon quantum dots/molybdenum phosphide nanoparticle for efficient electrochemical hydrogen evolution in alkaline medium publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00211 – volume: 11 start-page: 1389 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0135 article-title: Graphene as an intermediary for enhancing the electron transfer rate: a free-standing Ni3S2@graphene@Co9S8 electrocatalytic electrode for oxygen evolution reaction publication-title: Nano Res. doi: 10.1007/s12274-017-1754-5 – volume: 12 start-page: 4148 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0035 article-title: Construction of polarized carbon-nickel catalytic surfaces for potent, durable and economic hydrogen evolution reactions publication-title: ACS Nano doi: 10.1021/acsnano.7b08724 – volume: 10 start-page: 214 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0115 article-title: Hierarchical MoS2/Ni3S2 core-shell nanofibers for highly efficient and stable overall-water-splitting in alkaline media publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2018.09.004 – volume: 43 start-page: 8794 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0105 article-title: Self-supported Ni3S2@MoS2 core/shell nanorod arrays via decoration with CoS as a highly active and efficient electrocatalyst for hydrogen evolution and oxygen evolution reactions publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2018.03.110 – volume: 833 start-page: 133 year: 2019 ident: 10.1016/j.jelechem.2019.113795_bb0165 article-title: TiO2 sol/graphene modified 3D porous Ni foam: a novel platform for enzymatic electrochemical biosensor publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2018.11.031 – volume: 9 start-page: 40162 year: 2017 ident: 10.1016/j.jelechem.2019.113795_bb0210 article-title: Polyoxometalate-surfactant hybrids directed assembly of Ni3S2 into hollow microsphere as Pt-comparable electrocatalyst for hydrogen evolution reaction in alkaline medium publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b09634 – volume: 119 start-page: 872 year: 2017 ident: 10.1016/j.jelechem.2019.113795_bb0100 article-title: Electrocatalytic hydrogen evolution reaction on nano-nickel decorated graphene electrode publication-title: Energy doi: 10.1016/j.energy.2016.11.053 – volume: 5 start-page: 5995 year: 2017 ident: 10.1016/j.jelechem.2019.113795_bb0070 article-title: Hydrogen evolution electrocatalysis with binary-nonmetal transition metal compounds publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00743D – volume: 5 start-page: 1700733 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0265 article-title: Molybdenum carbide nanoparticles coated into the graphene wrapping N-doped porous carbon microspheres for highly efficient electrocatalytic hydrogen evolution both in acidic and alkaline media publication-title: Adv. Sci. doi: 10.1002/advs.201700733 – volume: 9 start-page: 5959 year: 2017 ident: 10.1016/j.jelechem.2019.113795_bb0215 article-title: Facile synthesis of vanadium-doped Ni3S2 nanowire arrays as active electrocatalyst for hydrogen evolution reaction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13244 – volume: 401 start-page: 329 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0140 article-title: Controllable synthesis of core-branch Ni3S2/Co9S8 directly on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.08.088 – volume: 36 start-page: 307 year: 2010 ident: 10.1016/j.jelechem.2019.113795_bb0005 article-title: Recent progress in alkaline water electrolysis for hydrogen production and applications publication-title: Prog. Energ. Combust. doi: 10.1016/j.pecs.2009.11.002 – volume: 10 start-page: 12807 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0130 article-title: Metallic Ni3S2 films grown by atomic layer deposition as an efficient and stable electrocatalyst for overall water splitting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00813 – volume: 242 start-page: 60 year: 2019 ident: 10.1016/j.jelechem.2019.113795_bb0110 article-title: Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.09.064 – volume: 80 start-page: 1339 year: 1958 ident: 10.1016/j.jelechem.2019.113795_bb0175 article-title: Preparation of graphitic oxide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01539a017 – volume: 8 start-page: 15315 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0225 article-title: Solvent-assisted thermal reduction of microcrystalline graphene oxide with excellent microwave absorption performance publication-title: RSC Adv. doi: 10.1039/C8RA01764F – volume: 41 start-page: 764 year: 2016 ident: 10.1016/j.jelechem.2019.113795_bb0095 article-title: Synthesis and characterization of Au-modified macroporous Ni electrocatalysts for alkaline water electrolysis publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.10.142 – volume: 10 start-page: 2430 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0020 article-title: Self-supported ternary Ni-S-Se nanorod arrays as highly active electrocatalyst for hydrogen generation in both acidic and basic media: experimental investigation and DFT calculation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14506 – volume: 53 start-page: 12446 year: 2017 ident: 10.1016/j.jelechem.2019.113795_bb0180 article-title: A Zn-doped Ni3S2 nanosheet array as a high-performance electrochemical water oxidation catalyst in alkaline solution publication-title: Chem. Commun. doi: 10.1039/C7CC06668F – volume: 271 start-page: 231 year: 2014 ident: 10.1016/j.jelechem.2019.113795_bb0090 article-title: Hydrogen evolution at catalytically-modified nickel foam in alkaline solution publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.07.188 – volume: 5 year: 2015 ident: 10.1016/j.jelechem.2019.113795_bb0200 article-title: Electrocatalysts: from water oxidation to reduction: homologous Ni–Co based nanowires as complementary water splitting electrocatalysts publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201402031 – volume: 5 start-page: 14950 year: 2017 ident: 10.1016/j.jelechem.2019.113795_bb0075 article-title: Tuning the catalytic functionality of transition metal dichalcogenides grown by chemical vapour deposition publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03039H – volume: 6 start-page: 7842 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0030 article-title: In situ synthesis of hierarchical MoSe2–CoSe2 nanotubes as an efficient electrocatalyst for the hydrogen evolution reaction in both acidic and alkaline media publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01552J – volume: 140 start-page: 610 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0120 article-title: Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08521 – volume: 6 start-page: 7786 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0255 article-title: Chemical strain formation through anion substitution in Cu2WS4 for efficient electrocatalysis of water dissociation publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01061G – volume: 47 start-page: 494 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0045 article-title: Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.012 – volume: 6 start-page: 19201 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0185 article-title: Vapor-phase hydrothermal transformation of a nanosheet array structure Ni(OH)2 into ultrathin Ni3S2 nanosheets on nickel foam for high-efficiency overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07162D – volume: 154 start-page: 213 year: 2014 ident: 10.1016/j.jelechem.2019.113795_bb0150 article-title: Ni3S2/carbon nanotube nanocomposite as electrode material for hydrogen evolution reaction in alkaline electrolyte and enzyme-free glucose detection publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.02.017 – volume: 43 start-page: 10580 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0080 article-title: Three-dimensional nickel nanodomes: efficient electrocatalysts for water splitting publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2018.02.013 – volume: 3 start-page: 779 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0065 article-title: Accelerated hydrogen evolution reaction in CoS2 by transition-metal doping publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.8b00066 – volume: 381 year: 2020 ident: 10.1016/j.jelechem.2019.113795_bb0170 article-title: In situ grown 3D hierarchical MnCo2O4.5@Ni(OH)2 nanosheet arrays on Ni foam for efficient electrocatalytic urea oxidation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122603 – volume: 11 start-page: 872 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0040 article-title: Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00076J – volume: 399 start-page: 769 year: 2017 ident: 10.1016/j.jelechem.2019.113795_bb0145 article-title: Synthesis of Ni3S2 nanotube arrays on nickel foam by catalysis of thermal reduced graphene for hydrogen evolution reaction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.12.042 – volume: 115 start-page: 155 year: 2014 ident: 10.1016/j.jelechem.2019.113795_bb0190 article-title: One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.10.140 – volume: 732 start-page: 248 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0260 article-title: High-efficiency and stable alloyed nickel based electrodes for hydrogen evolution by seawater splitting publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.10.194 – volume: 5 start-page: 3981 year: 2017 ident: 10.1016/j.jelechem.2019.113795_bb0270 article-title: NiSe2 pyramids deposited on N-doped graphene encapsulated Ni foam for high-performance water oxidation publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10303K – volume: 6 start-page: 6054 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0025 article-title: “Ethanol–water exchange” nanobubbles templated hierarchical hollow β-Mo2C/N-doped carbon composite nanospheres as an efficient hydrogen evolution electrocatalyst publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10977F – volume: 5 start-page: 16929 year: 2017 ident: 10.1016/j.jelechem.2019.113795_bb0060 article-title: Cobalt/molybdenum carbide@N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04893A – volume: 44 start-page: 22947 year: 2019 ident: 10.1016/j.jelechem.2019.113795_bb0160 article-title: Three-dimensional Ni foam supported pristine graphene as a superior oxygen evolution electrode publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.06.196 – volume: 441 start-page: 1024 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0250 article-title: 3D structured Mo-doped Ni3S2 nanosheets as efficient dual-electrocatalyst for overall water splitting publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.02.076 – volume: 244 start-page: 230 year: 2017 ident: 10.1016/j.jelechem.2019.113795_bb0085 article-title: Binder-free prickly nickel nanostructured/reduced graphene oxide composite: a highly efficient electrocatalyst for hydrogen evolution reaction in alkaline solutions publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.05.099 – volume: 56 start-page: 5731 year: 2011 ident: 10.1016/j.jelechem.2019.113795_bb0235 article-title: Electrodeposition of CdS from acidic aqueous thiosulfate solution—invesitigation of the mechanism by electrochemical quartz microbalance technique publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.04.046 – volume: 3 start-page: 23207 year: 2015 ident: 10.1016/j.jelechem.2019.113795_bb0220 article-title: A Fe-doped Ni3S2 particle film as a high-efficiency robust oxygen evolution electrode with very high current density publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06788J – volume: 29 start-page: 1605838 year: 2017 ident: 10.1016/j.jelechem.2019.113795_bb0050 article-title: Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications publication-title: Adv. Mater. doi: 10.1002/adma.201605838 – volume: 270 start-page: 398 year: 2019 ident: 10.1016/j.jelechem.2019.113795_bb0125 article-title: In situ hydrothermal growth of metallic Co9S8-Ni3S2 nanoarrays on nickel foam as bifunctional electrocatalysts for hydrogen and oxygen evolution reactions publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2018.12.004 – volume: 258 year: 2019 ident: 10.1016/j.jelechem.2019.113795_bb0245 article-title: Insight into the excellent catalytic activity of (CoMo)S2/graphene for hydrogen evolution reaction publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118012 – volume: 427 start-page: 267 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0240 article-title: Electrodeposition mechanism of quaternary compounds Cu2ZnSnS4: effect of the additives publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.07.119 – volume: 8 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0205 article-title: Theoretical and experimental insight into the effect of nitrogen doping on hydrogen evolution activity of Ni3S2 in alkaline medium publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703538 – volume: 8 start-page: 3895 year: 2018 ident: 10.1016/j.jelechem.2019.113795_bb0010 article-title: Bioinspired engineering of cobalt-phosphonate nanosheets for robust hydrogen evolution reaction publication-title: ACS Catal. doi: 10.1021/acscatal.7b04276 – volume: 299 start-page: 405 year: 2019 ident: 10.1016/j.jelechem.2019.113795_bb0155 article-title: Samarium oxide modified Ni-Co nanosheets based three-dimensional honeycomb film on nickel foam: a highly efficient electrocatalyst for hydrogen evolution reaction publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.12.169 – volume: 139 start-page: 12370 year: 2017 ident: 10.1016/j.jelechem.2019.113795_bb0055 article-title: Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06337 – volume: 13 year: 2017 ident: 10.1016/j.jelechem.2019.113795_bb0195 article-title: Incorporating nitrogen-doped graphene quantum dots and Ni3S2 nanosheets: a synergistic electrocatalyst with highly enhanced activity for overall water splitting publication-title: Small doi: 10.1002/smll.201700264 – volume: 786 start-page: 8 year: 2017 ident: 10.1016/j.jelechem.2019.113795_bb0230 article-title: The plume-like Ni3S2 supercapacitor electrodes formed on nickel foam by catalysis of thermal reduced graphene oxide publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2017.01.004 |
SSID | ssj0028812 |
Score | 2.4252925 |
Snippet | Low-cost transition metal sulfides are considered as one kind of the most promising catalysts for the electrochemical water-splitting. In this work, a facile... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113795 |
SubjectTerms | Catalytic activity Electrocatalysts Electron conductivity Graphene Hydrogen evolution reaction Hydrogen evolution reactions Metal foams Metal sulfides Nickel foam Nickel sulfide Noble metals Oxygen evolution reaction Oxygen evolution reactions Reduced oxide graphene Tafel slopes Transition metals Water splitting |
Title | 3D porous and self-supporting Ni foam@graphene@Ni3S2 as a bifunctional electrocatalyst for overall water splitting in alkaline solution |
URI | https://dx.doi.org/10.1016/j.jelechem.2019.113795 https://www.proquest.com/docview/2376944504 |
Volume | 858 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQPZQL6gPEq8iHXsPm4Ud8A21BW1bdQwGxN8uxY5ElZFebRRUXrv3bnckDFYTEgUsiRXaUeOyZb-yZ-Qj5noHZy0UI2s9wETCrskDx2ATgXmcsAwAgGq7DXxMxumLnUz5dI8M-FwbDKjvd3-r0Rlt3TwbdaA4WRTG4iLiM8dwAIAj4NckUM9iZxPr5R49PYR5xmrYnntA4wNb_ZQnPjmbINXOTY0Z6pJDeRCLPxOsG6oWqbuzP2Sey2QFHetJ-22eylldfyMdhz9f2lfxNflAA0-DJU1M5WuelD-r7BeJrME90UlA_N3fHTYVqUHDHkyK5iKmB1jQr0Ly1u4K0I8Zp9nUe6hX0WlKM8zRlSf8AMl3SGoBrEy5Ni4qa8tYgVKX9JN4iV2enl8NR0NEsBDZh4SrInVQxrl7PQyssSz1nxkS5dMxyuCTex2FqQyZDnwimvGSAMrhXNjKpy2SyTdareZXvEGojYUMAOODTJYy7NDVSuMi5UMWRcDLbJbwfW227GuRIhVHqPthspnuZaJSJbmWySwZP_RZtFY43e6hedPrZfNJgKt7se9DLWncrutYYPaQY_Dnbe8er98lGjA57E_Z9QNZXy_v8G6CaVXbYTNtD8uHk53g0wfv49_X4H_Te-bI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoHOgFtbRVebT1gWvYJH7FN6otaMtjL4C0N8uxYzXbNKw2i1AvvfK3mckDQVWJQy85RB4r8YxnvrHH_gg5yCHsFTIG72eFjLjTeaRFaiNIr3OeAwCQLdfhxVROrvnpTMzWyHg4C4Nllb3v73x66637N6N-NEeLshxdJkKluG8AEATyGjZ7RTa4YApN-_DPY51HmmXdlie0jrD5k2PC88M5ks38KPBIeqKR30Qh0cS_I9RfvroNQCdvyFaPHOnX7uPekrWi3iab44Gw7R25Z98ooGlI5amtPW2KKkTN7QIBNsQnOi1puLG_jtorqsHDHU1LdplSC61pXmJ865YFac-M0y7s_G5WILWkWOhpq4reATRd0gaQa1svTcua2uqnRaxKByt-T65Pjq_Gk6jnWYgc4_EqKrzSKU7fIGInHc-C4NYmhfLcCXiwENI4czFXcWCS66A4wAwRtEts5nPFPpD1-qYuPhLqEuliQDiQ1DEufJZZJX3ifazTRHqV7xAxjK1x_SXkyIVRmaHabG4GnRjUiel0skNGj3KL7hqOFyX0oDrzzKAMxIoXZfcHXZt-SjcGy4c0hz_nu__R9ReyObm6ODfn36dne-R1itl7WwO-T9ZXy9viE0CcVf65NeEH6fn5pQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+porous+and+self-supporting+Ni+foam%40graphene%40Ni3S2+as+a+bifunctional+electrocatalyst+for+overall+water+splitting+in+alkaline+solution&rft.jtitle=Journal+of+electroanalytical+chemistry+%28Lausanne%2C+Switzerland%29&rft.au=Jin%2C+Chenglong&rft.au=Zhou%2C+Nan&rft.au=Wang%2C+Yilong&rft.au=Li%2C+Xi&rft.date=2020-02-01&rft.pub=Elsevier+B.V&rft.issn=1572-6657&rft.eissn=1873-2569&rft.volume=858&rft_id=info:doi/10.1016%2Fj.jelechem.2019.113795&rft.externalDocID=S157266571931063X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-6657&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-6657&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-6657&client=summon |