Phase diagram of dense two-color QCD within lattice simulations

We present the results of a low-temperature scan of the phase diagram of dense two-color QCD with Nf = 2 quarks. The study is conducted using lattice simulation with rooted staggered quarks. At small chemical potential we observe the hadronic phase, where the theory is in a confining state, chiral s...

Full description

Saved in:
Bibliographic Details
Published inEPJ Web of Conferences Vol. 137; p. 7011
Main Authors Braguta, V.V., Ilgenfritz, E.-M., Kotov, A.Yu, Molochkov, A.V., Nikolaev, A.A.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Les Ulis EDP Sciences 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present the results of a low-temperature scan of the phase diagram of dense two-color QCD with Nf = 2 quarks. The study is conducted using lattice simulation with rooted staggered quarks. At small chemical potential we observe the hadronic phase, where the theory is in a confining state, chiral symmetry is broken, the baryon density is zero and there is no diquark condensate. At the critical point μ = mπ/2 we observe the expected second order transition to Bose-Einstein condensation of scalar diquarks. In this phase the system is still in confinement in conjunction with nonzero baryon density, but the chiral symmetry is restored in the chiral limit. We have also found that in the first two phases the system is well described by chiral perturbation theory. For larger values of the chemical potential the system turns into another phase, where the relevant degrees of freedom are fermions residing inside the Fermi sphere, and the diquark condensation takes place on the Fermi surface. In this phase the system is still in confinement, chiral symmetry is restored and the system is very similar to the quarkyonic state predicted by SU(Nc) theory at large Nc.
ISSN:2100-014X
2101-6275
2100-014X
DOI:10.1051/epjconf/201713707011