Dynamic GPS-based LEO orbit determination with 1 cm precision using the Bernese GNSS Software

The Astronomical Institute of the University of Bern (AIUB) has been performing GPS-based Precise Orbit Determination (POD) for a large variety of Low Earth Orbit (LEO) satellites since two decades. Traditionally, LEO orbits have been generated by a reduced-dynamic POD strategy using the Bernese GNS...

Full description

Saved in:
Bibliographic Details
Published inAdvances in space research Vol. 67; no. 2; pp. 788 - 805
Main Authors Mao, Xinyuan, Arnold, Daniel, Girardin, Valère, Villiger, Arturo, Jäggi, Adrian
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Astronomical Institute of the University of Bern (AIUB) has been performing GPS-based Precise Orbit Determination (POD) for a large variety of Low Earth Orbit (LEO) satellites since two decades. Traditionally, LEO orbits have been generated by a reduced-dynamic POD strategy using the Bernese GNSS Software, replacing an explicit modeling of non-gravitational forces by dedicated empirical orbit parametrizations. This LEO POD strategy can be advanced by two main developments: on the one hand, use is made of the GNSS Observation-Specific Bias (OSB) and clock products provided by the Center for Orbit Determination in Europe (CODE), allowing for the resolution of single-receiver GNSS carrier-phase ambiguities. On the other hand, the main focus of this article, a refined satellite non-gravitational force modeling strategy is constructed to reduce the amount of empirical parameters used to compensate for force modeling deficiencies. LEO POD is first performed for Sentinel-3, a satellite formation currently consists of two identical satellites −3A and −3B, which experience a similar in-flight environment and allow for direct POD performance comparisons. A third satellite Swarm-C, which flies at a lower altitude and has a more sophisticated surface geometry, is selected to validate the robustness of the new POD strategy. As a result, both the internal consistency checks and external orbit validations suggest superior orbit quality obtained for the three satellites for a time span of 1.5 years (7 June, 2018 to 31 December, 2019). The ambiguity resolution adds strong constraints to the orbits and the satellite non-gravitational force modeling leads to more tightly constrained (towards zero) pseudo-stochastic empirical parameters. The final orbit solutions agree with external orbit solutions and independent satellite laser ranging measurements at levels of sub-cm, indicating approximately 20% improvement w.r.t. the nominal reduced-dynamic orbit solutions. This suggests potential benefits to the space geodesy community that always pursues best-possible satellite orbits.
ISSN:0273-1177
1879-1948
DOI:10.1016/j.asr.2020.10.012