Numerical Brazilian disk testing of multiscale porous Ultra-High Temperature Ceramics
Recent developments in Ultra-High Temperature Ceramics (UHTC) processing have allowed for the introduction of significant amounts of porosity into these materials. These developments have widened the scope for how UHTCs can be integrated into hypersonic vehicles. Functional grading of porosity allow...
Saved in:
Published in | International journal of solids and structures Vol. 234-235; p. 111262 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.01.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0020-7683 1879-2146 |
DOI | 10.1016/j.ijsolstr.2021.111262 |
Cover
Loading…
Abstract | Recent developments in Ultra-High Temperature Ceramics (UHTC) processing have allowed for the introduction of significant amounts of porosity into these materials. These developments have widened the scope for how UHTCs can be integrated into hypersonic vehicles. Functional grading of porosity allows density and thermal conductivity to be spatially tailored to minimize weight penalty while maintaining thermal shielding and resilience to thermal shock. However, added porosity also results in decreased stiffness and strength. These relationships must be quantified in order to enable porous UHTC component design. In this work, a multiscale computational model using a quasi-static Material Point Method (MPM) implementation is used to quantify the mechanical response of porous UHTCs subject to Brazilian disk testing. The as-implemented MPM algorithm can readily handle large deformations, self-contact and damage. Microscale simulations corresponding to a range of strain states are simulated to calibrate an effective macroscale damage model for use in the macroscale Brazilian disk test simulations. A variety of mesoscale property distributions are considered and used in an initial effort to validate the multiscale modeling approach developed herein, with results closely matching experimental findings after model calibration at the mesoscale. |
---|---|
AbstractList | Recent developments in Ultra-High Temperature Ceramics (UHTC) processing have allowed for the introduction of significant amounts of porosity into these materials. These developments have widened the scope for how UHTCs can be integrated into hypersonic vehicles. Functional grading of porosity allows density and thermal conductivity to be spatially tailored to minimize weight penalty while maintaining thermal shielding and resilience to thermal shock. However, added porosity also results in decreased stiffness and strength. These relationships must be quantified in order to enable porous UHTC component design. In this work, a multiscale computational model using a quasi-static Material Point Method (MPM) implementation is used to quantify the mechanical response of porous UHTCs subject to Brazilian disk testing. The as-implemented MPM algorithm can readily handle large deformations, self-contact and damage. Microscale simulations corresponding to a range of strain states are simulated to calibrate an effective macroscale damage model for use in the macroscale Brazilian disk test simulations. A variety of mesoscale property distributions are considered and used in an initial effort to validate the multiscale modeling approach developed herein, with results closely matching experimental findings after model calibration at the mesoscale. |
ArticleNumber | 111262 |
Author | Tallon, Carolina Seidel, Gary D. Povolny, Stefan J. |
Author_xml | – sequence: 1 givenname: Stefan J. orcidid: 0000-0002-6552-8450 surname: Povolny fullname: Povolny, Stefan J. organization: Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA 24061, USA – sequence: 2 givenname: Gary D. orcidid: 0000-0002-1156-5010 surname: Seidel fullname: Seidel, Gary D. email: gary.seidel@vt.edu organization: Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA 24061, USA – sequence: 3 givenname: Carolina surname: Tallon fullname: Tallon, Carolina organization: Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA |
BookMark | eNqFkMtKxDAUhoMoOF5eQQKuOyanbdqAC3XwBqIbZx0yaaqnts2YpII-vRlGN25cnbP4v3P5Dsju6EZLyAlnc864OOvm2AXXh-jnwIDPOecgYIfMeF3JDHghdsmMMWBZJep8nxyE0DHGilyyGVk-ToP1aHRPr7z-wh71SBsMbzTaEHF8oa6lw9RHDClj6dp5NwW67KPX2R2-vNJnO6yt13Hyli5SM6AJR2Sv1X2wxz_1kCxvrp8Xd9nD0-394vIhM3nBYrYSTbMCaKGShZSlyHlbMW5XrOVNCSJdWALUHEx6syyaxkAimJRGQmkrXeSH5HQ7d-3d-5QOVp2b_JhWKhCslhzqepM636aMdyF42yqDUUd0Y3oCe8WZ2ohUnfoVqTYi1VZkwsUffO1x0P7zf_BiC9qk4AOtV8GgHY1t0FsTVePwvxHfFT6TuA |
CitedBy_id | crossref_primary_10_1016_j_prostr_2024_11_039 crossref_primary_10_1016_j_ceramint_2022_01_006 crossref_primary_10_1016_j_engfailanal_2023_107197 crossref_primary_10_1007_s11182_024_03300_3 crossref_primary_10_1088_1361_665X_ad811d |
Cites_doi | 10.1016/j.compstruct.2019.111625 10.1016/j.prostr.2016.06.418 10.1007/s00603-010-0115-4 10.1016/0013-7944(86)90036-6 10.1111/jace.12180 10.1016/j.mechmat.2021.103976 10.1111/jace.14705 10.1002/nme.4526 10.1007/BF00540858 10.1149/2.F04074IF 10.1002/nme.4699 10.1111/ijac.13122 10.1016/j.engfracmech.2014.04.001 10.1002/nme.5317 10.6028/jres.105.057 10.3221/IGF-ESIS.24.07 10.1016/S0022-5096(99)00029-0 10.1061/(ASCE)0733-9399(1987)113:10(1512) 10.1111/jace.12383 10.1002/nme.3110 10.1134/S0036029513040083 10.1007/s10659-007-9125-1 10.1016/S0997-7538(02)01232-9 10.1002/9781118700853.ch5 10.3221/IGF-ESIS.24.04 10.1016/j.tafmec.2019.01.024 10.3390/ma11112100 10.1111/jace.13349 10.1007/s00707-010-0326-5 10.1115/1.4010337 10.1557/jmr.2013.102 10.1016/j.ijsolstr.2017.02.031 10.1007/BF00559396 10.1016/j.ijsolstr.2015.12.010 10.1137/S0036144502414942 10.1016/j.ijimpeng.2010.09.007 10.1016/j.physme.2008.11.002 10.1016/0022-5096(63)90036-X 10.1016/0045-7825(94)90112-0 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jan 2022 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jan 2022 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.ijsolstr.2021.111262 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2146 |
ExternalDocumentID | 10_1016_j_ijsolstr_2021_111262 S0020768321003449 |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 E3Z EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE IXB J1W JJJVA KOM LY7 M24 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SMS SPC SPCBC SPD SST SSZ T5K TN5 TR2 VH1 WUQ XFK XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c340t-b6ddb22f2794995631f701eb0f1d526439522812c01654ddc2b6d099c925e7a43 |
IEDL.DBID | .~1 |
ISSN | 0020-7683 |
IngestDate | Fri Jul 25 05:06:15 EDT 2025 Thu Apr 24 23:02:32 EDT 2025 Tue Jul 01 01:20:03 EDT 2025 Fri Feb 23 02:42:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Computational micromechanics Ultra-high temperature ceramics Brazilian disk test Material point method Damage modeling Multiscale modeling Effective properties Porous |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-b6ddb22f2794995631f701eb0f1d526439522812c01654ddc2b6d099c925e7a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1156-5010 0000-0002-6552-8450 |
PQID | 2608912884 |
PQPubID | 2045457 |
ParticipantIDs | proquest_journals_2608912884 crossref_citationtrail_10_1016_j_ijsolstr_2021_111262 crossref_primary_10_1016_j_ijsolstr_2021_111262 elsevier_sciencedirect_doi_10_1016_j_ijsolstr_2021_111262 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | International journal of solids and structures |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Tallon, Chavara, Gillen, Riley, Edwards, Moricca, Franks (b45) 2013; 96 Nemat-Nasser, Hori (b25) 2013 Tallon, Franks (b47) 2015 Sadeghirad, Brannon, Guilkey (b35) 2013; 95 Psakhie, Horie, Korostelev, Smolin, Dmitriev, Shilko, Alekseev (b32) 1995; 38 Forsgren, Gill, Wright (b6) 2002; 44 Jayatilaka, Trustrum (b13) 1977; 12 Weibull (b50) 1951; 103 Bardenhagen, Kober (b2) 2004; 5 Loehman, Corral, Dumm, Kotula, Tandon (b16) 2004; 71 Silling (b39) 2000; 48 Silling, Epton, Weckner, Xu, Askari (b40) 2007; 88 Burzyński (b3) 2008; 56 Wilkins (b51) 2013 Kachanov (b14) 1958 Timothy, Meschke (b48) 2016; 83 Markides, Pazis, Kourkoulis (b19) 2011; 44 Nagaraja, Gururaja (b24) 2018 Wuchina, Opila, Opeka, Fahrenholtz, Talmy (b53) 2007; 16 Strack, Leavy, Brannon (b43) 2015; 102 Hill (b11) 1963; 11 Konovalenko, Smolin, Psakhie (b15) 2013; 7 Mikushina, Smolin (b22) 2019; 1214 Nowak, Nowak, Pęcherski, Potoczek, Śliwa (b28) 2018 (b1) 2016 Greco, Leonetti, Pranno, Rudykh (b8) 2020; 233 (b52) 2020 Lur’e, Solyaev (b17) 2013; 2013 Franks, Tallon, Studart, Sesso, Leo (b7) 2017; 100 Ševeček, Majer, Marcián, Bertolla, Kotoul (b38) 2018 Munro (b23) 2000; 105 Povolny, Seidel, Tallon (b31) 2021; 160 Nowak, Nowak, Pęcherski, Potoczek, Śliwa (b26) 2013; 58 Sadeghirad, Brannon, Burghardt (b34) 2011; 86 Makarov (b18) 2008; 11 Homel, Herbold (b12) 2017; 109 Seeber, Gonzenbach, Gauckler (b36) 2013; 28 Zhu, Blal, Cunsolo, Baillis, Michaud (b55) 2018; 11 Sulsky, Chen, Schreyer (b44) 1994; 118 Pijaudier-Cabot, Bažant (b30) 1987; 113 Zhu, Blal, Cunsolo, Baillis (b54) 2017; 115 Hicks, Zhou, Liu, Tallon (b10) 2019; 16 Smolin, Roman, Konovalenko, Eremina, Buyakova, Psakhie (b42) 2014; 130 Mazars (b20) 1986; 25 Hamed, Lee, Jasiuk (b9) 2010; 213 Tallon, Franks (b46) 2014 Parthasarathy, Petry, Cinibulk, Mathur, Gruber (b29) 2013; 96 Psakhie, Shilko, Smolin, Astafurov, Ovcharenko (b33) 2013; 7 Smolin, Makarov, Eremin, Matyko (b41) 2016; 2 (b49) 2021 Dong, Shin (b5) 2015; 98 Meyer Jr., Brannon (b21) 2012; 42 Nowak, Nowak, Pęcherski, Potoczek, Śliwa (b27) 2015; 60 Ševeček, Bertolla, Chlup, Řehořek, Majer, Marcián, Kotoul (b37) 2019; 100 Carol, Rizzi, Willam (b4) 2002; 21 Zhu (10.1016/j.ijsolstr.2021.111262_b55) 2018; 11 Psakhie (10.1016/j.ijsolstr.2021.111262_b32) 1995; 38 Sadeghirad (10.1016/j.ijsolstr.2021.111262_b34) 2011; 86 Weibull (10.1016/j.ijsolstr.2021.111262_b50) 1951; 103 (10.1016/j.ijsolstr.2021.111262_b1) 2016 Nowak (10.1016/j.ijsolstr.2021.111262_b28) 2018 Ševeček (10.1016/j.ijsolstr.2021.111262_b38) 2018 Nowak (10.1016/j.ijsolstr.2021.111262_b27) 2015; 60 Franks (10.1016/j.ijsolstr.2021.111262_b7) 2017; 100 Kachanov (10.1016/j.ijsolstr.2021.111262_b14) 1958 (10.1016/j.ijsolstr.2021.111262_b52) 2020 Meyer Jr. (10.1016/j.ijsolstr.2021.111262_b21) 2012; 42 Jayatilaka (10.1016/j.ijsolstr.2021.111262_b13) 1977; 12 Dong (10.1016/j.ijsolstr.2021.111262_b5) 2015; 98 Loehman (10.1016/j.ijsolstr.2021.111262_b16) 2004; 71 Hicks (10.1016/j.ijsolstr.2021.111262_b10) 2019; 16 Ševeček (10.1016/j.ijsolstr.2021.111262_b37) 2019; 100 Pijaudier-Cabot (10.1016/j.ijsolstr.2021.111262_b30) 1987; 113 Sadeghirad (10.1016/j.ijsolstr.2021.111262_b35) 2013; 95 Nowak (10.1016/j.ijsolstr.2021.111262_b26) 2013; 58 Tallon (10.1016/j.ijsolstr.2021.111262_b45) 2013; 96 Hamed (10.1016/j.ijsolstr.2021.111262_b9) 2010; 213 Lur’e (10.1016/j.ijsolstr.2021.111262_b17) 2013; 2013 (10.1016/j.ijsolstr.2021.111262_b49) 2021 Carol (10.1016/j.ijsolstr.2021.111262_b4) 2002; 21 Strack (10.1016/j.ijsolstr.2021.111262_b43) 2015; 102 Tallon (10.1016/j.ijsolstr.2021.111262_b46) 2014 Makarov (10.1016/j.ijsolstr.2021.111262_b18) 2008; 11 Tallon (10.1016/j.ijsolstr.2021.111262_b47) 2015 Psakhie (10.1016/j.ijsolstr.2021.111262_b33) 2013; 7 Forsgren (10.1016/j.ijsolstr.2021.111262_b6) 2002; 44 Mazars (10.1016/j.ijsolstr.2021.111262_b20) 1986; 25 Konovalenko (10.1016/j.ijsolstr.2021.111262_b15) 2013; 7 Mikushina (10.1016/j.ijsolstr.2021.111262_b22) 2019; 1214 Greco (10.1016/j.ijsolstr.2021.111262_b8) 2020; 233 Bardenhagen (10.1016/j.ijsolstr.2021.111262_b2) 2004; 5 Nagaraja (10.1016/j.ijsolstr.2021.111262_b24) 2018 Smolin (10.1016/j.ijsolstr.2021.111262_b42) 2014; 130 Burzyński (10.1016/j.ijsolstr.2021.111262_b3) 2008; 56 Hill (10.1016/j.ijsolstr.2021.111262_b11) 1963; 11 Seeber (10.1016/j.ijsolstr.2021.111262_b36) 2013; 28 Homel (10.1016/j.ijsolstr.2021.111262_b12) 2017; 109 Povolny (10.1016/j.ijsolstr.2021.111262_b31) 2021; 160 Silling (10.1016/j.ijsolstr.2021.111262_b40) 2007; 88 Wuchina (10.1016/j.ijsolstr.2021.111262_b53) 2007; 16 Parthasarathy (10.1016/j.ijsolstr.2021.111262_b29) 2013; 96 Timothy (10.1016/j.ijsolstr.2021.111262_b48) 2016; 83 Smolin (10.1016/j.ijsolstr.2021.111262_b41) 2016; 2 Nemat-Nasser (10.1016/j.ijsolstr.2021.111262_b25) 2013 Munro (10.1016/j.ijsolstr.2021.111262_b23) 2000; 105 Wilkins (10.1016/j.ijsolstr.2021.111262_b51) 2013 Sulsky (10.1016/j.ijsolstr.2021.111262_b44) 1994; 118 Markides (10.1016/j.ijsolstr.2021.111262_b19) 2011; 44 Silling (10.1016/j.ijsolstr.2021.111262_b39) 2000; 48 Zhu (10.1016/j.ijsolstr.2021.111262_b54) 2017; 115 |
References_xml | – volume: 44 start-page: 525 year: 2002 end-page: 597 ident: b6 article-title: Interior methods for nonlinear optimization publication-title: SIAM Rev. – volume: 95 start-page: 928 year: 2013 end-page: 952 ident: b35 article-title: Second-order convected particle domain interpolation (CPDI2) with enrichment for weak discontinuities at material interfaces publication-title: Internat. J. Numer. Methods Engrg. – volume: 102 start-page: 468 year: 2015 end-page: 495 ident: b43 article-title: Aleatory uncertainty and scale effects in computational damage models for failure and fragmentation publication-title: Internat. J. Numer. Methods Engrg. – volume: 86 start-page: 1435 year: 2011 end-page: 1456 ident: b34 article-title: A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations publication-title: Internat. J. Numer. Methods Engrg. – volume: 100 start-page: 242 year: 2019 end-page: 250 ident: b37 article-title: Modelling of cracking of the ceramic foam specimen with a central notch under the tensile load publication-title: Theor. Appl. Fract. Mech. – volume: 213 start-page: 131 year: 2010 end-page: 154 ident: b9 article-title: Multiscale modeling of elastic properties of cortical bone publication-title: Acta Mech. – volume: 98 start-page: 920 year: 2015 end-page: 928 ident: b5 article-title: Coupled thermomechanical multiscale modeling of alumina ceramics to predict thermally induced fractures under laser heating publication-title: J. Am. Ceram. Soc. – volume: 16 start-page: 802 year: 2019 end-page: 813 ident: b10 article-title: Aligned continuous cylindrical pores derived from electrospun polymer fibers in titanium diboride publication-title: Int. J. Appl. Ceramic Technol. – start-page: 1903 year: 2018 end-page: 1908 ident: b28 article-title: Assessment of failure strength of real alumina foams with use of the periodic structure model publication-title: Arch. Metallurgy Mater. – volume: 83 start-page: 1 year: 2016 end-page: 12 ident: b48 article-title: A cascade continuum micromechanics model for the effective elastic properties of porous materials publication-title: Int. J. Solids Struct. – year: 2021 ident: b49 article-title: MinE 323-Brazilian tensile strength test (lab 3) – start-page: 83 year: 2014 end-page: 111 ident: b46 article-title: Near-net-shaping of ultra-high temperature ceramics publication-title: Ultra-High Temperature Ceramics Mater. Extreme Environ. Appl. – volume: 21 start-page: 747 year: 2002 end-page: 772 ident: b4 article-title: An ‘extended’volumetric/deviatoric formulation of anisotropic damage based on a pseudo-log rate publication-title: Eur. J. Mech. A Solids – volume: 48 start-page: 175 year: 2000 end-page: 209 ident: b39 article-title: Reformulation of elasticity theory for discontinuities and long-range forces publication-title: J. Mech. Phys. Solids – volume: 233 year: 2020 ident: b8 article-title: Mechanical behavior of bio-inspired nacre-like composites: A hybrid multiscale modeling approach publication-title: Compos. Struct. – volume: 11 start-page: 357 year: 1963 end-page: 372 ident: b11 article-title: Elastic properties of reinforced solids: some theoretical principles publication-title: J. Mech. Phys. Solids – volume: 28 start-page: 2281 year: 2013 end-page: 2287 ident: b36 article-title: Mechanical properties of highly porous alumina foams publication-title: J. Mater. Res. – year: 2018 ident: b24 article-title: Effective property estimation of CMC minicomposites considering porosity publication-title: ASME International Mechanical Engineering Congress and Exposition, vol. 52149 – volume: 96 start-page: 907 year: 2013 end-page: 915 ident: b29 article-title: Thermal and oxidation response of UHTC leading edge samples exposed to simulated hypersonic flight conditions publication-title: J. Am. Ceram. Soc. – volume: 115 start-page: 61 year: 2017 end-page: 72 ident: b54 article-title: Micromechanical modeling of effective elastic properties of open-cell foam publication-title: Int. J. Solids Struct. – volume: 160 year: 2021 ident: b31 article-title: Investigating the mechanical behavior of multiscale porous ultra-high temperature ceramics using a quasi-static material point method publication-title: Mech. Mater. – year: 1958 ident: b14 article-title: Time of the rupture process under creep conditions publication-title: Izv. Akad. Nauk – volume: 25 start-page: 729 year: 1986 end-page: 737 ident: b20 article-title: A description of micro-and macroscale damage of concrete structures publication-title: Eng. Fract. Mech. – volume: 103 start-page: 293 year: 1951 end-page: 297 ident: b50 article-title: A statistical distribution function of wide applicability publication-title: J. Appl. Mech. – volume: 56 start-page: 269 year: 2008 end-page: 305 ident: b3 article-title: Theoretical foundations of the hypotheses of material effort publication-title: Eng. Trans. – volume: 2013 start-page: 272 year: 2013 end-page: 281 ident: b17 article-title: Simulation of the mechanical properties of nanostructured porous ceramics publication-title: Russian Metallurgy (Metally) – volume: 16 start-page: 30 year: 2007 ident: b53 article-title: UHTCS: ultra-high temperature ceramic materials for extreme environment applications publication-title: Electrochem. Soc. Interface – volume: 44 start-page: 113 year: 2011 end-page: 119 ident: b19 article-title: Influence of friction on the stress field of the Brazilian tensile test publication-title: Rock Mech. Rock Eng. – volume: 118 start-page: 179 year: 1994 end-page: 196 ident: b44 article-title: A particle method for history-dependent materials publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 7 start-page: 75 year: 2013 end-page: 80 ident: b15 article-title: Multiscale approach to description of deformation and fracture of brittle media with hierarchical porous structure on the basis of movable cellular automaton method publication-title: Frattura Ed IntegritÀ Strutturale – volume: 109 start-page: 1013 year: 2017 end-page: 1044 ident: b12 article-title: Field-gradient partitioning for fracture and frictional contact in the material point method publication-title: Internat. J. Numer. Methods Engrg. – volume: 12 start-page: 1426 year: 1977 end-page: 1430 ident: b13 article-title: Statistical approach to brittle fracture publication-title: J. Mater. Sci. – volume: 2 start-page: 3353 year: 2016 end-page: 3360 ident: b41 article-title: Numerical simulation of mesomechanical behavior of porous brittle materials publication-title: Procedia Structural Integrity – volume: 58 year: 2013 ident: b26 article-title: On the reconstruction method of ceramic foam structures and the methodology of young modulus determination publication-title: Arch. Metallurgy Mater. – volume: 11 start-page: 2100 year: 2018 ident: b55 article-title: Effective elastic behavior of irregular closed-cell foams publication-title: Materials – volume: 130 start-page: 53 year: 2014 end-page: 64 ident: b42 article-title: 3D simulation of dependence of mechanical properties of porous ceramics on porosity publication-title: Eng. Fract. Mech. – year: 2013 ident: b25 article-title: Micromechanics: Overall Properties of Heterogeneous Materials – volume: 38 start-page: 1157 year: 1995 end-page: 1168 ident: b32 article-title: Method of movable cellular automata as a tool for simulation within the framework of mesomechanics publication-title: Russian Phys. J. – volume: 88 start-page: 151 year: 2007 end-page: 184 ident: b40 article-title: Peridynamic states and constitutive modeling publication-title: J. Elasticity – volume: 105 start-page: 709 year: 2000 ident: b23 article-title: Material properties of titanium diboride publication-title: J. Res. Natl. Inst. Stand. Technol. – volume: 5 start-page: 477 year: 2004 end-page: 496 ident: b2 article-title: The generalized interpolation material point method publication-title: Comput. Model. Eng. Sci. – year: 2015 ident: b47 article-title: Multi-Scale Porous Ultra High Temperature Ceramics – volume: 1214 year: 2019 ident: b22 article-title: Numerical analysis of the stress state and fracture of porous ceramics at the mesolevel publication-title: J. Phys. Conf. Ser. – volume: 71 start-page: 36 year: 2004 end-page: 38 ident: b16 article-title: Ultrahigh-temperature ceramics for hypersonic vehicle applications publication-title: Industrial Heating – volume: 96 start-page: 2374 year: 2013 end-page: 2381 ident: b45 article-title: Colloidal processing of zirconium diboride ultra-high temperature ceramics publication-title: J. Am. Ceram. Soc. – year: 2020 ident: b52 article-title: Mathematica, version 12.1, Champaign, IL, 2020 – volume: 42 start-page: 48 year: 2012 end-page: 58 ident: b21 article-title: A model for statistical variation of fracture properties in a continuum mechanics code publication-title: Int. J. Impact Eng. – start-page: 271 year: 2018 end-page: 276 ident: b38 article-title: Computational analysis of crack-like defects influence on the open cell ceramic foam tensile strength publication-title: Key Engineering Materials, vol. 774 – volume: 100 start-page: 458 year: 2017 end-page: 490 ident: b7 article-title: Colloidal processing: enabling complex shaped ceramics with unique multiscale structures publication-title: J. Am. Ceram. Soc. – volume: 7 start-page: 26 year: 2013 end-page: 59 ident: b33 article-title: Development of a formalism of movable cellular automaton method for numerical modeling of fracture of heterogeneous elastic-plastic materials publication-title: Frattura Ed Integrita Strutturale – volume: 11 start-page: 213 year: 2008 end-page: 227 ident: b18 article-title: Mathematical theory of evolution of loaded solids and media publication-title: Phys. Mesomech. – year: 2013 ident: b51 article-title: Computer Simulation of Dynamic Phenomena – year: 2016 ident: b1 article-title: Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens – volume: 113 start-page: 1512 year: 1987 end-page: 1533 ident: b30 article-title: Nonlocal damage theory publication-title: J. Eng. Mech. – volume: 60 year: 2015 ident: b27 article-title: Mechanical properties of the ceramic open-cell foams of variable cell sizes publication-title: Arch. Metallurgy Mater. – volume: 233 year: 2020 ident: 10.1016/j.ijsolstr.2021.111262_b8 article-title: Mechanical behavior of bio-inspired nacre-like composites: A hybrid multiscale modeling approach publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.111625 – volume: 2 start-page: 3353 year: 2016 ident: 10.1016/j.ijsolstr.2021.111262_b41 article-title: Numerical simulation of mesomechanical behavior of porous brittle materials publication-title: Procedia Structural Integrity doi: 10.1016/j.prostr.2016.06.418 – volume: 44 start-page: 113 issue: 1 year: 2011 ident: 10.1016/j.ijsolstr.2021.111262_b19 article-title: Influence of friction on the stress field of the Brazilian tensile test publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-010-0115-4 – volume: 60 year: 2015 ident: 10.1016/j.ijsolstr.2021.111262_b27 article-title: Mechanical properties of the ceramic open-cell foams of variable cell sizes publication-title: Arch. Metallurgy Mater. – volume: 25 start-page: 729 issue: 5–6 year: 1986 ident: 10.1016/j.ijsolstr.2021.111262_b20 article-title: A description of micro-and macroscale damage of concrete structures publication-title: Eng. Fract. Mech. doi: 10.1016/0013-7944(86)90036-6 – volume: 96 start-page: 907 issue: 3 year: 2013 ident: 10.1016/j.ijsolstr.2021.111262_b29 article-title: Thermal and oxidation response of UHTC leading edge samples exposed to simulated hypersonic flight conditions publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12180 – year: 2020 ident: 10.1016/j.ijsolstr.2021.111262_b52 – volume: 160 year: 2021 ident: 10.1016/j.ijsolstr.2021.111262_b31 article-title: Investigating the mechanical behavior of multiscale porous ultra-high temperature ceramics using a quasi-static material point method publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2021.103976 – volume: 1214 year: 2019 ident: 10.1016/j.ijsolstr.2021.111262_b22 article-title: Numerical analysis of the stress state and fracture of porous ceramics at the mesolevel – year: 2018 ident: 10.1016/j.ijsolstr.2021.111262_b24 article-title: Effective property estimation of CMC minicomposites considering porosity – volume: 5 start-page: 477 issue: 6 year: 2004 ident: 10.1016/j.ijsolstr.2021.111262_b2 article-title: The generalized interpolation material point method publication-title: Comput. Model. Eng. Sci. – volume: 100 start-page: 458 issue: 2 year: 2017 ident: 10.1016/j.ijsolstr.2021.111262_b7 article-title: Colloidal processing: enabling complex shaped ceramics with unique multiscale structures publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.14705 – volume: 95 start-page: 928 issue: 11 year: 2013 ident: 10.1016/j.ijsolstr.2021.111262_b35 article-title: Second-order convected particle domain interpolation (CPDI2) with enrichment for weak discontinuities at material interfaces publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.4526 – volume: 12 start-page: 1426 issue: 7 year: 1977 ident: 10.1016/j.ijsolstr.2021.111262_b13 article-title: Statistical approach to brittle fracture publication-title: J. Mater. Sci. doi: 10.1007/BF00540858 – volume: 16 start-page: 30 issue: 4 year: 2007 ident: 10.1016/j.ijsolstr.2021.111262_b53 article-title: UHTCS: ultra-high temperature ceramic materials for extreme environment applications publication-title: Electrochem. Soc. Interface doi: 10.1149/2.F04074IF – volume: 102 start-page: 468 issue: 3–4 year: 2015 ident: 10.1016/j.ijsolstr.2021.111262_b43 article-title: Aleatory uncertainty and scale effects in computational damage models for failure and fragmentation publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.4699 – volume: 16 start-page: 802 issue: 2 year: 2019 ident: 10.1016/j.ijsolstr.2021.111262_b10 article-title: Aligned continuous cylindrical pores derived from electrospun polymer fibers in titanium diboride publication-title: Int. J. Appl. Ceramic Technol. doi: 10.1111/ijac.13122 – volume: 130 start-page: 53 year: 2014 ident: 10.1016/j.ijsolstr.2021.111262_b42 article-title: 3D simulation of dependence of mechanical properties of porous ceramics on porosity publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2014.04.001 – volume: 109 start-page: 1013 issue: 7 year: 2017 ident: 10.1016/j.ijsolstr.2021.111262_b12 article-title: Field-gradient partitioning for fracture and frictional contact in the material point method publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.5317 – volume: 105 start-page: 709 issue: 5 year: 2000 ident: 10.1016/j.ijsolstr.2021.111262_b23 article-title: Material properties of titanium diboride publication-title: J. Res. Natl. Inst. Stand. Technol. doi: 10.6028/jres.105.057 – volume: 7 start-page: 75 issue: 24 year: 2013 ident: 10.1016/j.ijsolstr.2021.111262_b15 article-title: Multiscale approach to description of deformation and fracture of brittle media with hierarchical porous structure on the basis of movable cellular automaton method publication-title: Frattura Ed IntegritÀ Strutturale doi: 10.3221/IGF-ESIS.24.07 – volume: 48 start-page: 175 issue: 1 year: 2000 ident: 10.1016/j.ijsolstr.2021.111262_b39 article-title: Reformulation of elasticity theory for discontinuities and long-range forces publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(99)00029-0 – volume: 113 start-page: 1512 issue: 10 year: 1987 ident: 10.1016/j.ijsolstr.2021.111262_b30 article-title: Nonlocal damage theory publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(1987)113:10(1512) – volume: 96 start-page: 2374 issue: 8 year: 2013 ident: 10.1016/j.ijsolstr.2021.111262_b45 article-title: Colloidal processing of zirconium diboride ultra-high temperature ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12383 – volume: 86 start-page: 1435 issue: 12 year: 2011 ident: 10.1016/j.ijsolstr.2021.111262_b34 article-title: A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.3110 – volume: 2013 start-page: 272 issue: 4 year: 2013 ident: 10.1016/j.ijsolstr.2021.111262_b17 article-title: Simulation of the mechanical properties of nanostructured porous ceramics publication-title: Russian Metallurgy (Metally) doi: 10.1134/S0036029513040083 – volume: 71 start-page: 36 issue: 1 year: 2004 ident: 10.1016/j.ijsolstr.2021.111262_b16 article-title: Ultrahigh-temperature ceramics for hypersonic vehicle applications publication-title: Industrial Heating – start-page: 271 year: 2018 ident: 10.1016/j.ijsolstr.2021.111262_b38 article-title: Computational analysis of crack-like defects influence on the open cell ceramic foam tensile strength – volume: 88 start-page: 151 issue: 2 year: 2007 ident: 10.1016/j.ijsolstr.2021.111262_b40 article-title: Peridynamic states and constitutive modeling publication-title: J. Elasticity doi: 10.1007/s10659-007-9125-1 – year: 2016 ident: 10.1016/j.ijsolstr.2021.111262_b1 – year: 2021 ident: 10.1016/j.ijsolstr.2021.111262_b49 – volume: 21 start-page: 747 issue: 5 year: 2002 ident: 10.1016/j.ijsolstr.2021.111262_b4 article-title: An ‘extended’volumetric/deviatoric formulation of anisotropic damage based on a pseudo-log rate publication-title: Eur. J. Mech. A Solids doi: 10.1016/S0997-7538(02)01232-9 – year: 2013 ident: 10.1016/j.ijsolstr.2021.111262_b51 – year: 2013 ident: 10.1016/j.ijsolstr.2021.111262_b25 – start-page: 83 year: 2014 ident: 10.1016/j.ijsolstr.2021.111262_b46 article-title: Near-net-shaping of ultra-high temperature ceramics publication-title: Ultra-High Temperature Ceramics Mater. Extreme Environ. Appl. doi: 10.1002/9781118700853.ch5 – start-page: 1903 year: 2018 ident: 10.1016/j.ijsolstr.2021.111262_b28 article-title: Assessment of failure strength of real alumina foams with use of the periodic structure model publication-title: Arch. Metallurgy Mater. – volume: 7 start-page: 26 issue: 24 year: 2013 ident: 10.1016/j.ijsolstr.2021.111262_b33 article-title: Development of a formalism of movable cellular automaton method for numerical modeling of fracture of heterogeneous elastic-plastic materials publication-title: Frattura Ed Integrita Strutturale doi: 10.3221/IGF-ESIS.24.04 – volume: 100 start-page: 242 year: 2019 ident: 10.1016/j.ijsolstr.2021.111262_b37 article-title: Modelling of cracking of the ceramic foam specimen with a central notch under the tensile load publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2019.01.024 – volume: 58 year: 2013 ident: 10.1016/j.ijsolstr.2021.111262_b26 article-title: On the reconstruction method of ceramic foam structures and the methodology of young modulus determination publication-title: Arch. Metallurgy Mater. – volume: 11 start-page: 2100 issue: 11 year: 2018 ident: 10.1016/j.ijsolstr.2021.111262_b55 article-title: Effective elastic behavior of irregular closed-cell foams publication-title: Materials doi: 10.3390/ma11112100 – volume: 98 start-page: 920 issue: 3 year: 2015 ident: 10.1016/j.ijsolstr.2021.111262_b5 article-title: Coupled thermomechanical multiscale modeling of alumina ceramics to predict thermally induced fractures under laser heating publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13349 – volume: 213 start-page: 131 issue: 1–2 year: 2010 ident: 10.1016/j.ijsolstr.2021.111262_b9 article-title: Multiscale modeling of elastic properties of cortical bone publication-title: Acta Mech. doi: 10.1007/s00707-010-0326-5 – volume: 103 start-page: 293 issue: 730 year: 1951 ident: 10.1016/j.ijsolstr.2021.111262_b50 article-title: A statistical distribution function of wide applicability publication-title: J. Appl. Mech. doi: 10.1115/1.4010337 – volume: 28 start-page: 2281 issue: 17 year: 2013 ident: 10.1016/j.ijsolstr.2021.111262_b36 article-title: Mechanical properties of highly porous alumina foams publication-title: J. Mater. Res. doi: 10.1557/jmr.2013.102 – year: 2015 ident: 10.1016/j.ijsolstr.2021.111262_b47 – volume: 56 start-page: 269 issue: 3 year: 2008 ident: 10.1016/j.ijsolstr.2021.111262_b3 article-title: Theoretical foundations of the hypotheses of material effort publication-title: Eng. Trans. – volume: 115 start-page: 61 year: 2017 ident: 10.1016/j.ijsolstr.2021.111262_b54 article-title: Micromechanical modeling of effective elastic properties of open-cell foam publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2017.02.031 – volume: 38 start-page: 1157 issue: 11 year: 1995 ident: 10.1016/j.ijsolstr.2021.111262_b32 article-title: Method of movable cellular automata as a tool for simulation within the framework of mesomechanics publication-title: Russian Phys. J. doi: 10.1007/BF00559396 – volume: 83 start-page: 1 year: 2016 ident: 10.1016/j.ijsolstr.2021.111262_b48 article-title: A cascade continuum micromechanics model for the effective elastic properties of porous materials publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2015.12.010 – volume: 44 start-page: 525 issue: 4 year: 2002 ident: 10.1016/j.ijsolstr.2021.111262_b6 article-title: Interior methods for nonlinear optimization publication-title: SIAM Rev. doi: 10.1137/S0036144502414942 – year: 1958 ident: 10.1016/j.ijsolstr.2021.111262_b14 article-title: Time of the rupture process under creep conditions publication-title: Izv. Akad. Nauk – volume: 42 start-page: 48 year: 2012 ident: 10.1016/j.ijsolstr.2021.111262_b21 article-title: A model for statistical variation of fracture properties in a continuum mechanics code publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2010.09.007 – volume: 11 start-page: 213 issue: 5–6 year: 2008 ident: 10.1016/j.ijsolstr.2021.111262_b18 article-title: Mathematical theory of evolution of loaded solids and media publication-title: Phys. Mesomech. doi: 10.1016/j.physme.2008.11.002 – volume: 11 start-page: 357 issue: 5 year: 1963 ident: 10.1016/j.ijsolstr.2021.111262_b11 article-title: Elastic properties of reinforced solids: some theoretical principles publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(63)90036-X – volume: 118 start-page: 179 issue: 1–2 year: 1994 ident: 10.1016/j.ijsolstr.2021.111262_b44 article-title: A particle method for history-dependent materials publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(94)90112-0 |
SSID | ssj0004390 |
Score | 2.3995209 |
Snippet | Recent developments in Ultra-High Temperature Ceramics (UHTC) processing have allowed for the introduction of significant amounts of porosity into these... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111262 |
SubjectTerms | Algorithms Brazilian disk test Ceramics Computational micromechanics Damage assessment Damage modeling Effective properties High temperature Hypersonic vehicles Material point method Mechanical analysis Mesoscale phenomena Multiscale modeling Porosity Porous Shielding Simulation Stiffness Thermal conductivity Thermal shock Ultra-high temperature ceramics Ultrahigh temperature |
Title | Numerical Brazilian disk testing of multiscale porous Ultra-High Temperature Ceramics |
URI | https://dx.doi.org/10.1016/j.ijsolstr.2021.111262 https://www.proquest.com/docview/2608912884 |
Volume | 234-235 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQWWBAPEWhIA-sofHFeY1QgVqQOhGpm5U4DkopbdWkCwO_nbs8oCAhBrYk8kXR2bn7bN_3mbEr0KRYEhhLhjK1pPHACjFTWAAizhxPe7apCmTH3jCSDxN3ssUGLReGyiqb2F_H9CpaN0_6jTf7yzwnji_QNhKRUEi3jkh8Uvqkn3_9_lXmgQm3pqHgNIlab7CEp9f5FDu4KEkXFARFD_DgtwT1I1RX-ed-n-01wJHf1N92wLbM_JDtbsgJHrFovK73X2b8dhW_5bSCwdO8eOElaWnMn_ki41UFYYFtDEfojfN-Hs3KVWxRwQd_Moiia5VlPsCL11wXxyy6v3saDK3m2ARLO9IurcRL0wQgA5-EZ1zPEZlvC5PYmUhdIASCmAvzuq6YTGmqAS0QKOoQXOPH0jlhnflibk4Z9xMhRSbiwE9BJiJIHLCzEEGbHWtpy6TL3NZXSjea4nS0xUy1xWNT1fpYkY9V7eMu63_aLWtVjT8twrYr1LfxoTD0_2nba_tONX9ooXAeF4SYnAN59o9Xn7MdID5EtSbTY51ytTYXiFLK5LIahpds-2b0OBzj3Why-wEkc-co |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RSPAh5YQ-OL8xpLBSq0dGolNitxHJRSCmrCwq_nLg9eEmJgi6JcFN05d5_t-z4zdg6aFEsCY8lQJpY0HlghVgoLQESp42nPNmWD7NgbTOXtvXvfYv2GC0NtlXXur3J6ma3rO93am92XLCOOL9A2EpFQSLcuXGGrpE6Fg321dzMcjD_pkU611EIzJTL4QhSeXWQzjHFekDQoCEog4MFvNepHti5L0PUW26yxI-9Vn7fNWmaxwza-KArusun4tdqCmfPLZfSW0SIGT7L8kRckp7F44M8pL5sIc3zGcETfOPXn03mxjCzq-eATg0C6Elrmfbx4ynS-x6bXV5P-wKpPTrC0I-3Cir0kiQFS8El7xvUckfq2MLGdisQFAiEIu7C065LMlCQa0AKxog7BNX4knX3WXjwvzAHjfiykSEUU-AnIWASxA3YaIm6zIy1tGR8yt_GV0rWsOJ1uMVdN_9hMNT5W5GNV-fiQdT_sXiphjT8twiYU6tsQUZj9_7TtNLFT9U-aK5zKBSHW50Ae_ePVZ2xtMLkbqdHNeHjM1oHoEeUSTYe1i-WrOUHQUsSn9aB8B6YQ6NU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Brazilian+disk+testing+of+multiscale+porous+Ultra-High+Temperature+Ceramics&rft.jtitle=International+journal+of+solids+and+structures&rft.au=Povolny%2C+Stefan+J&rft.au=Seidel%2C+Gary+D&rft.au=Tallon%2C+Carolina&rft.date=2022-01-01&rft.pub=Elsevier+BV&rft.issn=0020-7683&rft.eissn=1879-2146&rft.volume=234%2F235&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijsolstr.2021.111262&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7683&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7683&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7683&client=summon |