Numerical Brazilian disk testing of multiscale porous Ultra-High Temperature Ceramics

Recent developments in Ultra-High Temperature Ceramics (UHTC) processing have allowed for the introduction of significant amounts of porosity into these materials. These developments have widened the scope for how UHTCs can be integrated into hypersonic vehicles. Functional grading of porosity allow...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of solids and structures Vol. 234-235; p. 111262
Main Authors Povolny, Stefan J., Seidel, Gary D., Tallon, Carolina
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.01.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent developments in Ultra-High Temperature Ceramics (UHTC) processing have allowed for the introduction of significant amounts of porosity into these materials. These developments have widened the scope for how UHTCs can be integrated into hypersonic vehicles. Functional grading of porosity allows density and thermal conductivity to be spatially tailored to minimize weight penalty while maintaining thermal shielding and resilience to thermal shock. However, added porosity also results in decreased stiffness and strength. These relationships must be quantified in order to enable porous UHTC component design. In this work, a multiscale computational model using a quasi-static Material Point Method (MPM) implementation is used to quantify the mechanical response of porous UHTCs subject to Brazilian disk testing. The as-implemented MPM algorithm can readily handle large deformations, self-contact and damage. Microscale simulations corresponding to a range of strain states are simulated to calibrate an effective macroscale damage model for use in the macroscale Brazilian disk test simulations. A variety of mesoscale property distributions are considered and used in an initial effort to validate the multiscale modeling approach developed herein, with results closely matching experimental findings after model calibration at the mesoscale.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0020-7683
1879-2146
DOI:10.1016/j.ijsolstr.2021.111262