A Model Predictive Approach for Enhancing Transient Stability of Grid-Forming Converters

A model predictive control (MPC) method for enhancing post-fault transient stability of grid-forming (GFM) inverter-based resources (IBRs) is developed in this paper. This proposed controller is activated as soon as the converter enters into the post-fault current-saturation mode. It aims at mitigat...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power systems Vol. 39; no. 5; pp. 6675 - 6688
Main Authors Arjomandi-Nezhad, Ali, Guo, Yifei, Pal, Bikash C., Varagnolo, Damiano
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A model predictive control (MPC) method for enhancing post-fault transient stability of grid-forming (GFM) inverter-based resources (IBRs) is developed in this paper. This proposed controller is activated as soon as the converter enters into the post-fault current-saturation mode. It aims at mitigating the instability arising from insufficient deceleration due to current saturation and thus improving the transient stability of a GFM-IBR. The MPC approach optimises the post-fault trajectory of GFM IBRs by introducing appropriate corrective phase angle jumps and active power references where the post-fault dynamics of GFM IBRs are addressed. These two signals provide controllability over GFM IBR's post-fault trajectory. This paper addresses the mitigation of oscillations between current-saturation mode and normal mode by forced saturation if conditions for remaining in the normal mode do not hold. The performance of the proposal is tested via dynamic simulations under various grid conditions and compared with other existing strategies. The results demonstrate significant improvement in transient stability.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2024.3368626