Why do honey-bee (Apis millifera) foragers transfer nectar to several receivers? Information improvement through multiple sampling in a biological system

The task of nectar foraging in honey-bees is partitioned between foragers and receivers. Foragers typically transfer a nectar load in the nest as sub-loads to several receivers rather than as a single transfer. Foragers experience delays in finding receivers and use these delays to balance the numbe...

Full description

Saved in:
Bibliographic Details
Published inBehavioral ecology and sociobiology Vol. 49; no. 4; pp. 244 - 250
Main Authors Hart, Adam G, Ratnieks, Francis L.W
Format Journal Article
LanguageEnglish
Published Heidelberg Springer-Verlag 01.03.2001
Berlin Springer
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The task of nectar foraging in honey-bees is partitioned between foragers and receivers. Foragers typically transfer a nectar load in the nest as sub-loads to several receivers rather than as a single transfer. Foragers experience delays in finding receivers and use these delays to balance the number of foragers and receivers. A short delay results in the forager-recruiting waggle dance whereas a long delay results in the receiver-recruiting tremble dance. Several nectar transfers increase the cost of this system by introducing additional delays in finding extra receivers. We tested four hypotheses to explain the occurrence of multiple transfer. We found no evidence that multiple transfer is due to different crop capacities of foragers and receivers or that it results from extensive trophallactic interactions with nest-mates. Receiver bees frequently evaporate nectar in their mouthparts to hasten the production of honey. The suggestion has been made that multiple transfer is driven by receivers who take partial loads from foragers to enhance nectar evaporation. An alternative suggestion is that foragers drive multiple transfer to gain better information on the balance of foragers and receivers. Multiple sampling of the delay in finding a receiver reduces the standard deviation of the delay mean and so provides foragers with better information than is provided by a single delay. The enhanced-evaporation hypothesis predicts that receivers break foragers' first transfer whereas the information improvement hypothesis predicts foragers break their first transfers. Furthermore, only the information improvement hypothesis predicts a high level of multiple receptions. Data on transfer break-off and receiver behaviour strongly support the information improvement hypothesis and reject the enhanced-evaporation hypothesis. We suggest that multiple transfer is an adaptive sampling mechanism, which improves foragers' information on colony work allocation, and that multiple sampling is a common feature of social insect societies.
Bibliography:http://dx.doi.org/10.1007/s002650000306
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0340-5443
1432-0762
DOI:10.1007/s002650000306