A fast insight into the nonlinear oscillation of nano-electro-mechanical resonators considering the size effect and the van der Waals force
Nano/micro actuators are widely used in micro/nano-electro-mechanical systems (NEMS/MEMS) and the study on their nonlinear oscillation is of great significance. This paper begins with a wrong variational principle (Ghalambaz M., Appl. Nanosci ., 6 (2016) 309) of the reduced governing partial differe...
Saved in:
Published in | Europhysics letters Vol. 139; no. 2; pp. 23001 - 23004 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Les Ulis
EDP Sciences, IOP Publishing and Società Italiana di Fisica
01.07.2022
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nano/micro actuators are widely used in micro/nano-electro-mechanical systems (NEMS/MEMS) and the study on their nonlinear oscillation is of great significance. This paper begins with a wrong variational principle (Ghalambaz M.,
Appl. Nanosci
.,
6
(2016) 309) of the reduced governing partial differential equation of the resonator which is used to describe the nonlinear oscillation of nano-electro-mechanical resonators that takes into account the size effect and the van der Waals force. By using the semi-inverse method,the we establish the genuine variational principle. Then a simple method, the so-called He's frequency formulation, is applied to solve the problem, where only one step is needed to get the approximate amplitude-frequency relationship. Comparing with the existing method, we show that the proposed method is simple but effective, which is helpful for the study of the nonlinear oscillation in micro/nano-electro-mechanical systems. |
---|---|
AbstractList | Nano/micro actuators are widely used in micro/nano-electro-mechanical systems (NEMS/MEMS) and the study on their nonlinear oscillation is of great significance. This paper begins with a wrong variational principle (Ghalambaz M., Appl. Nanosci., 6 (2016) 309) of the reduced governing partial differential equation of the resonator which is used to describe the nonlinear oscillation of nano-electro-mechanical resonators that takes into account the size effect and the van der Waals force. By using the semi-inverse method,the we establish the genuine variational principle. Then a simple method, the so-called He's frequency formulation, is applied to solve the problem, where only one step is needed to get the approximate amplitude-frequency relationship. Comparing with the existing method, we show that the proposed method is simple but effective, which is helpful for the study of the nonlinear oscillation in micro/nano-electro-mechanical systems. Nano/micro actuators are widely used in micro/nano-electro-mechanical systems (NEMS/MEMS) and the study on their nonlinear oscillation is of great significance. This paper begins with a wrong variational principle (Ghalambaz M., Appl. Nanosci ., 6 (2016) 309) of the reduced governing partial differential equation of the resonator which is used to describe the nonlinear oscillation of nano-electro-mechanical resonators that takes into account the size effect and the van der Waals force. By using the semi-inverse method,the we establish the genuine variational principle. Then a simple method, the so-called He's frequency formulation, is applied to solve the problem, where only one step is needed to get the approximate amplitude-frequency relationship. Comparing with the existing method, we show that the proposed method is simple but effective, which is helpful for the study of the nonlinear oscillation in micro/nano-electro-mechanical systems. |
Author | Wang, Kang-Jia |
Author_xml | – sequence: 1 givenname: Kang-Jia orcidid: 0000-0002-3905-0844 surname: Wang fullname: Wang, Kang-Jia organization: Henan Polytechnic University School of Physics and Electronic Information Engineering, - Jiaozuo, 454003, China |
BookMark | eNp9kUFPHCEYhonRpOvqvUeSHnrpVBgGZuZoTGtNTLxoPJJvmI9dNiNMAU3sX_BPy-42NmlsTwR43hd4OCaHPngk5CNnX3nN-jNW97KSrJVnYIQZmwOy4HWnqqaTzSFZvG1_IMcpbRjjvONqQV7OqYWUqfPJrdbbMQea10hL_eQ8QqQhGTdNkF3wNFjqwYcKJzQ5huoBzRq8MzDRiCl4yCEmakJpGzE6v9p1JfcLKVpbMhT8uFt7Ak8LQu8BpkRtiAZPyJEtEzz9PS7J3fdvtxc_quuby6uL8-vKiIblqh-GQZYXQtu2jVIMBYhRNYNCVEqJflSSWxxQdqaTvEfRCtkVsBPK9iMMYkk-7XvnGH4-Ysp6Ex6jL0dqwXkxI4RihWJ7ysSQUkSr5-geID5rzvRWud461Vuneq-8RNRfEePyTlyO4Kb_BT_vgy7Mfy6Dc4mIXte6FuXD9DzaQn55h_xn8Sv6RqWG |
CODEN | EULEEJ |
CitedBy_id | crossref_primary_10_3390_axioms10040320 crossref_primary_10_1142_S0217984923500124 crossref_primary_10_1177_14613484221104647 crossref_primary_10_1142_S0218348X22501390 crossref_primary_10_3390_axioms11090445 crossref_primary_10_1177_14613484221126759 crossref_primary_10_1140_epjp_s13360_023_03804_w crossref_primary_10_1142_S0218348X22501924 crossref_primary_10_1515_phys_2022_0214 crossref_primary_10_1007_s42417_023_01016_1 crossref_primary_10_1016_j_rinp_2023_106208 crossref_primary_10_1142_S0218348X22501857 crossref_primary_10_1016_j_ijleo_2022_170403 crossref_primary_10_1142_S0218348X22501894 crossref_primary_10_1088_1402_4896_ad593f crossref_primary_10_1142_S0218348X22500566 crossref_primary_10_1142_S0218348X22501687 |
Cites_doi | 10.1007/s10910-021-01212-y 10.1108/HFF-06-2019-0523 10.1016/j.ijsolstr.2006.12.015 10.1140/epjp/i2017-11438-4 10.1016/j.aml.2021.107199 10.1007/s40819-016-0251-y 10.1177/1461348421992608 10.31181/rme200102143h 10.1177/14613484211044613 10.1016/j.physleta.2021.127588 10.1016/j.proeng.2011.04.286 10.1177/14613484211032757 10.1007/s13204-015-0445-3 10.1108/HFF-07-2019-0577 10.1007/s10778-018-0900-4 10.31181/rme200102001q 10.1007/s10910-019-01063-8 10.3390/axioms11050234 10.1007/s00419-017-1252-y 10.1063/1.1927327 10.1109/TED.2008.2006540 10.1016/j.aej.2020.07.039 10.1016/j.cjph.2016.11.007 10.1177/1461348420984041 |
ContentType | Journal Article |
Copyright | Copyright © 2022 EPLA |
Copyright_xml | – notice: Copyright © 2022 EPLA |
DBID | AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1209/0295-5075/ac3cd4 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1286-4854 |
ExternalDocumentID | 10_1209_0295_5075_ac3cd4 epl21100589 |
GroupedDBID | -~X 1JI 4.4 5B3 5GY 5VS 5ZH 6TJ 7.M 7.Q AAFWJ AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABGRX ABQJV ABVAM ACAFW ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ATQHT AZPVJ CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK H~9 IHE IJHAN IOP IZVLO KOT LAP M45 MV1 N5L N9A NS0 P2P PIG PJBAE R4D RED REP RID RIN RNS ROL RPA SJN SY9 TN5 UCJ UPT ZMT ~02 AAYXX ABNSH CITATION 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c340t-9bbb5cd4a7774660e3a3d64b6ee66639d651febe58c8519e37358466836f9dab3 |
IEDL.DBID | IOP |
ISSN | 0295-5075 |
IngestDate | Mon Jun 30 15:48:59 EDT 2025 Tue Jul 01 00:30:12 EDT 2025 Thu Apr 24 23:07:25 EDT 2025 Tue Aug 02 23:16:35 EDT 2022 Wed Aug 21 03:33:34 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-9bbb5cd4a7774660e3a3d64b6ee66639d651febe58c8519e37358466836f9dab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3905-0844 |
PQID | 3110113360 |
PQPubID | 1806341 |
PageCount | 4 |
ParticipantIDs | proquest_journals_3110113360 crossref_citationtrail_10_1209_0295_5075_ac3cd4 crossref_primary_10_1209_0295_5075_ac3cd4 iop_journals_10_1209_0295_5075_ac3cd4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220701 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 7 year: 2022 text: 20220701 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Les Ulis |
PublicationPlace_xml | – name: Les Ulis |
PublicationTitle | Europhysics letters |
PublicationTitleAbbrev | EPL |
PublicationTitleAlternate | EPL |
PublicationYear | 2022 |
Publisher | EDP Sciences, IOP Publishing and Società Italiana di Fisica IOP Publishing |
Publisher_xml | – name: EDP Sciences, IOP Publishing and Società Italiana di Fisica – name: IOP Publishing |
References | He (epl21100589bib15) 2021; 7 Ghalambaz (epl21100589bib19) 2016; 6 Tian (epl21100589bib3) 2021; 29 He (epl21100589bib27) 2021; 119 Anjum (epl21100589bib1) 2020; 59 Ramezani (epl21100589bib8) 2007; 44 Mohammadian (epl21100589bib9) 2018; 54 Wang (epl21100589bib23) 2022; 30 Wang (epl21100589bib32) 2021; 26 He (epl21100589bib31) 2019; 57 Anjum (epl21100589bib2) 2020 Wang (epl21100589bib35) 2019; 27 Wang (epl21100589bib28) 2022; 30 Wang (epl21100589bib16) 2022; 39 Mohammadian (epl21100589bib11) 2017; 87 He (epl21100589bib29) 2021; 31 Beni (epl21100589bib5) 2021; 10 Wang (epl21100589bib34) 2019; 27 He (epl21100589bib24) 2020; 6 Zuo (epl21100589bib40) 2021; 59 He (epl21100589bib20) 1997; 14 Wang (epl21100589bib17) 2022; 41 He (epl21100589bib26) 2019; 30 Mohammadian (epl21100589bib13) 2017; 132 Ekinci (epl21100589bib6) 2005; 76 Qie (epl21100589bib41) 2020; 2 Mohammadian (epl21100589bib10) 2017; 55 Mohammadian (epl21100589bib12) 2017; 3 He (epl21100589bib36) 2019; 15 Wang (epl21100589bib39) 2022; 35 Wang (epl21100589bib14) 2020 Wang (epl21100589bib37) 2021; 31 Wang (epl21100589bib22) 2022; 11 Wang (epl21100589bib33) 2022; 138 El‐Dib (epl21100589bib43) 2021 He (epl21100589bib42) 2021; 2 Wang (epl21100589bib30) 2021; 412 Feng (epl21100589bib38) 2021; 40 Wang (epl21100589bib25) 2022; 30 Choi (epl21100589bib7) 2008; 55 Tian (epl21100589bib4) 2021; 40 Wang (epl21100589bib18) 2022; 41 Wang (epl21100589bib21) 2021; 48 |
References_xml | – volume: 35 year: 2022 ident: epl21100589bib39 publication-title: Results Phys. – volume: 59 start-page: 735 year: 2021 ident: epl21100589bib40 publication-title: J. Math. Chem. doi: 10.1007/s10910-021-01212-y – volume: 31 start-page: 1369 year: 2021 ident: epl21100589bib29 publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-06-2019-0523 – volume: 44 start-page: 4925 year: 2007 ident: epl21100589bib8 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2006.12.015 – volume: 132 start-page: 1 year: 2017 ident: epl21100589bib13 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2017-11438-4 – volume: 15 year: 2019 ident: epl21100589bib36 publication-title: Results Phys. – year: 2021 ident: epl21100589bib43 – volume: 119 year: 2021 ident: epl21100589bib27 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2021.107199 – volume: 39 year: 2022 ident: epl21100589bib16 publication-title: Results Phys. – volume: 3 start-page: 2519 year: 2017 ident: epl21100589bib12 publication-title: Int. J. Appl. Comput. Math. doi: 10.1007/s40819-016-0251-y – volume: 26 year: 2021 ident: epl21100589bib32 publication-title: Results Phys. – volume: 40 start-page: 1671 year: 2021 ident: epl21100589bib38 publication-title: J. Low Freq. Noise Vib. Act. Control doi: 10.1177/1461348421992608 – volume: 2 start-page: 143 year: 2021 ident: epl21100589bib42 publication-title: Rep. Mech. Eng. doi: 10.31181/rme200102143h – volume: 41 start-page: 216 year: 2022 ident: epl21100589bib18 publication-title: J. Low Freq. Noise Vib. Active Control doi: 10.1177/14613484211044613 – volume: 412 year: 2021 ident: epl21100589bib30 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2021.127588 – volume: 30 year: 2022 ident: epl21100589bib23 publication-title: Fractals – volume: 10 start-page: 1718 year: 2021 ident: epl21100589bib5 publication-title: Proc. Eng. doi: 10.1016/j.proeng.2011.04.286 – volume: 7 start-page: 78 year: 2021 ident: epl21100589bib15 publication-title: J. Appl. Comput. Mech. – volume: 138 year: 2022 ident: epl21100589bib33 publication-title: EPL – volume: 41 start-page: 112 year: 2022 ident: epl21100589bib17 publication-title: J. Low Freq. Noise Vib. Active Control doi: 10.1177/14613484211032757 – volume: 6 start-page: 309 year: 2016 ident: epl21100589bib19 publication-title: Appl. Nanosci. doi: 10.1007/s13204-015-0445-3 – volume: 30 start-page: 1189 year: 2019 ident: epl21100589bib26 publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-07-2019-0577 – volume: 48 year: 2021 ident: epl21100589bib21 publication-title: Math. Methods Appl. Sci. – year: 2020 ident: epl21100589bib14 – volume: 54 start-page: 470 year: 2018 ident: epl21100589bib9 publication-title: Int. Appl. Mech. doi: 10.1007/s10778-018-0900-4 – volume: 2 start-page: 1 year: 2020 ident: epl21100589bib41 publication-title: Rep. Mech. Eng. doi: 10.31181/rme200102001q – volume: 30 year: 2022 ident: epl21100589bib28 publication-title: Fractals – volume: 27 year: 2019 ident: epl21100589bib34 publication-title: Fractals – volume: 30 year: 2022 ident: epl21100589bib25 publication-title: Fractals – volume: 6 start-page: 735 year: 2020 ident: epl21100589bib24 publication-title: J. Appl. Comput. Mech. – volume: 57 start-page: 2075 year: 2019 ident: epl21100589bib31 publication-title: J. Math. Chem. doi: 10.1007/s10910-019-01063-8 – volume: 11 start-page: 234 year: 2022 ident: epl21100589bib22 publication-title: Axioms doi: 10.3390/axioms11050234 – volume: 14 start-page: 23 year: 1997 ident: epl21100589bib20 publication-title: Int. J. Turbo Jet Engines – year: 2020 ident: epl21100589bib2 – volume: 87 start-page: 1317 year: 2017 ident: epl21100589bib11 publication-title: Arch. Appl. Mech. doi: 10.1007/s00419-017-1252-y – volume: 29 year: 2021 ident: epl21100589bib3 publication-title: Fractals – volume: 76 year: 2005 ident: epl21100589bib6 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1927327 – volume: 55 start-page: 3482 year: 2008 ident: epl21100589bib7 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2008.2006540 – volume: 27 year: 2019 ident: epl21100589bib35 publication-title: Fractals – volume: 31 year: 2021 ident: epl21100589bib37 publication-title: Results Phys. – volume: 59 start-page: 4343 year: 2020 ident: epl21100589bib1 publication-title: Alexandria Eng. J. doi: 10.1016/j.aej.2020.07.039 – volume: 55 start-page: 47 year: 2017 ident: epl21100589bib10 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2016.11.007 – volume: 40 start-page: 1380 year: 2021 ident: epl21100589bib4 publication-title: J. Low Freq. Noise Vib. Act. Control doi: 10.1177/1461348420984041 |
SSID | ssj0011816 |
Score | 2.4624825 |
Snippet | Nano/micro actuators are widely used in micro/nano-electro-mechanical systems (NEMS/MEMS) and the study on their nonlinear oscillation is of great... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 23001 |
SubjectTerms | Inverse method Microactuators Nanoelectromechanical systems Partial differential equations Resonators Size effects Van der Waals forces |
Title | A fast insight into the nonlinear oscillation of nano-electro-mechanical resonators considering the size effect and the van der Waals force |
URI | https://iopscience.iop.org/article/10.1209/0295-5075/ac3cd4 https://www.proquest.com/docview/3110113360 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RUhceCO2FOQDHDh4N14_EotThagqJB4HKnpAsvyUKkqy2qSX_oX-acZxdlEBVYhTomhix-PHfJN5AbwUXCShPKOssTUVIVjqgtc0Y1snJPNpLJ3w4aM6PhHvT-XpDrzZxsJ0q-non-NtSRRcWFhSIVR6US21pAhj5MJ67oPYhVu8QcGZo_c-fd6aEFB0jYbKDfVko_xbC9dk0i72-8fBPEqbo3vwbfOdxcnk-_xicHN_-VsKx_8cyH24O6FQclhIH8BObB_C7dEb1PeP4OqQJNsP5Kzts-6O16EjiBRJWxJr2DXJOTDPix8d6RJpbdvRqaQO_RFzOHGefYLKfP4936174qfSoCgrx7b6s8tIijsJsW0YnyGsJ0hCvlrcFQTxtI-P4eTo3Ze3x3Sq2kA9F9VAtXNO4mhsjchSqSpyy4MSTsWIqhLXQUmWcOnIxiPa05HXPIMg1XCVdLCOP4E9HE18CkRHpmsmbahTJZJ2Dct2v0yMKoF0YgaLzbwZP6U0z5U1zk1WbZDFJrPYZBabwuIZvN6-sSrpPG6gfYUzZ6Y93d9AR67RxRX2z7VZGlTvKmZWIc3gYLOeftFxRF6Mca6q_X_s6RncWeboi9Fb-AD2hvVFfI6YaHAvxrX_E7msBMY |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbaIhAX3ogtBXygBw7ejeNH1gcOFWXVUig9UNGb8VOqaLOrTSpE_wI_hr_CT2IcZxcVUMWlB06JovFzxp5v4vEMQs8545FLRwkdm4pw7w2x3imSsK3lgrrYpU54ty93DvmbI3G0gr4v78JMZ_3WP4TXHCg4T2EOhVCoUVEqQQDGiJFxzHk-mvnYe1Xuha9fwGZrXu5uA4M3y3Ly-sOrHdKnFSCO8aIlyloroJypAPpIWQRmmJfcyhAAyzPlpaARxibGDuCICqxiSUvLMZNReWMZ1LuKrgkGujrdGHx_sDy2AHXZHY4uetifi_6t1xf04CqM9Q9l0Gm4yW30YzE32bHl8_CstUN3_lvYyP9o8u6gWz3axlu5e3fRSqjvoeud16tr7qNvWziapsXHdZP-UcCznWJAxLjOAUTMHKdYnyfZXxBPI65NPSV96iByGtK16STleB6SSZMyF2HXp0AFTNDV1RyfB5zdZrCpffcNzBcMJPijgdWPwW5w4QE6vJKZeIjWYDThEcIqUFVRYXwVCx6VHdN0vpmIwfQRlg_QaCEr2vWh21MGkROdTDhgq05s1YmtOrN1gF4sS8xy2JJLaDdBWnS_dzWX0OELdGEG7TOlSw1mbEE1SNIAbSxk-BcdA4RJKWOyWP_Hlp6hGwfbE_12d3_vMbpZpgsnnYP0Blpr52fhCcDA1j7tlh5Gn65aXH8Ca-pj5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+insight+into+the+nonlinear+oscillation+of+nano-electro-mechanical+resonators+considering+the+size+effect+and+the+van+der+Waals+force&rft.jtitle=Europhysics+letters&rft.au=Wang%2C+Kang-Jia&rft.date=2022-07-01&rft.pub=EDP+Sciences%2C+IOP+Publishing+and+Societ%C3%A0+Italiana+di+Fisica&rft.issn=0295-5075&rft.eissn=1286-4854&rft.volume=139&rft.issue=2&rft_id=info:doi/10.1209%2F0295-5075%2Fac3cd4&rft.externalDocID=epl21100589 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0295-5075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0295-5075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0295-5075&client=summon |