High and very high cycle fatigue failure mechanisms in selective laser melted aluminum alloys
Selective laser melting, a laser-based additive manufacturing process, can manufacture components with good geometrical integrity. Application of the selective laser melting process for serial production is subject to its reliability on mechanical properties, especially on fatigue behavior, when it...
Saved in:
Published in | Journal of materials research Vol. 32; no. 23; pp. 4296 - 4304 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, USA
Cambridge University Press
14.12.2017
Springer International Publishing Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Selective laser melting, a laser-based additive manufacturing process, can manufacture components with good geometrical integrity. Application of the selective laser melting process for serial production is subject to its reliability on mechanical properties, especially on fatigue behavior, when it is required to be applied for dynamic applications. This study focuses on microstructural, quasistatic, high cycle fatigue (HCF), and very high cycle fatigue (VHCF) mechanisms of aluminum alloys manufactured by selective laser melting. Manufacturing of hybrid structures by selective laser melting process is also investigated. Microstructural features were investigated for process-induced effects and the corresponding influence on quasistatic and fatigue properties. The microstructural features can be controlled in the selective laser melting process for required properties. Joining strengths in hybrid structures can be improved by post process heat-treatments. Material constants in different fatigue regions were determined, and higher fatigue strength of hybrid alloys was achieved in HCF as well as VHCF regimes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0884-2914 2044-5326 |
DOI: | 10.1557/jmr.2017.314 |