Stainless Steel Screen Modified with Renatured Xerogel for Efficient and Highly Stable Oil/Water Separation via Gravity
The application of hydrogel coatings to surface-modified metallic materials has gained considerable attention in engineering practice such as water-oil separation. However, the low coating adhesion and poor coating stability restrict its application. In this study, to obtain special wettability and...
Saved in:
Published in | Langmuir Vol. 39; no. 8; pp. 3131 - 3141 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
28.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The application of hydrogel coatings to surface-modified metallic materials has gained considerable attention in engineering practice such as water-oil separation. However, the low coating adhesion and poor coating stability restrict its application. In this study, to obtain special wettability and durable filter materials, polyacrylamide (PAM)/sodium alginate (SA) xerogel particles were first prepared and adhered to a stainless steel screen by using an epoxy resin as a linker. Subsequently, the xerogel particles of the screen rehydrates in water to form a PAM-SA double-network hydrogel. The results show that the screen modified by PAM-SA xerogel of 20-30 μm particle size and a linker concentration of 0.1 g/mL resulted in a chimeric structure and subsequently transformed a uniform double-network hydrogel coating in water. According to the experimental results, the rough hydrogel coating exhibits superhydrophilicity and superoleophobicity under water; in particular, it has excellent wear resistance as well as physical and chemical stability. Under gravity-driven action, the PAM-SA-modified screen demonstrates high separation efficiency values of up to 99% in separating a wide range of oil/water mixtures and maintaining a water flux of (2-6) × 10
L·m
·h
. There was no significant reduction in efficiency of separation and water flux after 10 cycles, indicating that the PAM-SA-modified screen is capable of offering outstanding separation performance and durability. Moreover, the hydrogel-modified screen demonstrated corrosion and swelling resistance in some extreme environments, paving a way for practical applications in water treatment. The novel hydrogel-coating-modified screen with ease of preparation holds great promise for oil/water separation and other engineering applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0743-7463 1520-5827 1520-5827 |
DOI: | 10.1021/acs.langmuir.2c03307 |