Reversible data hiding in encrypted images with secret sharing and hybrid coding

Reversible data hiding in encrypted images (RDHEI) is an essential data security technique. Most RDHEI methods cannot perform well in embedding capacity and security. To address this issue, we propose a new RDHEI method using Chinese remainder theorem-based secret sharing (CRTSS) and hybrid coding....

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 33; no. 11; p. 1
Main Authors Yu, Chunqiang, Zhang, Xianquan, Qin, Chuan, Tang, Zhenjun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Reversible data hiding in encrypted images (RDHEI) is an essential data security technique. Most RDHEI methods cannot perform well in embedding capacity and security. To address this issue, we propose a new RDHEI method using Chinese remainder theorem-based secret sharing (CRTSS) and hybrid coding. Specifically, a hybrid coding is first proposed for RDH to achieve high embedding capacity. At the content owner side, a novel iterative encryption is designed to conduct block based encryption for perfectly preserving the spatial correlation of original blocks in their encrypted blocks. Then, the CRTSS with the constraints is exploited to generate multiple encrypted image shares, in which spatial correlations of the encrypted blocks are also preserved. Meanwhile, the CRTSS provides good security properties for the proposed method. Since there are strong spatial correlations in the blocks of each share, the data-hider can exploit the proposed hybrid coding to perform data embedding for improving capacity. On the receiver side, even if some shares are corrupted/missing, the original image can be losslessly recovered as long as enough uncorrupted marked shares are obtained. Experiment results show that the proposed RDHEI method outperforms some state-of-the-art methods, including some secret sharing (SS) based methods in terms of embedding capacity.
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2023.3270882