A deletion–contraction relation for the chromatic symmetric function

We extend the definition of the chromatic symmetric function XG to include graphs G with a vertex-weight function w:V(G)→N. We show how this provides the chromatic symmetric function with a natural deletion–contraction relation analogous to that of the chromatic polynomial. Using this relation we de...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of combinatorics Vol. 89; p. 103143
Main Authors Crew, Logan, Spirkl, Sophie
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2020
Online AccessGet full text
ISSN0195-6698
DOI10.1016/j.ejc.2020.103143

Cover

Abstract We extend the definition of the chromatic symmetric function XG to include graphs G with a vertex-weight function w:V(G)→N. We show how this provides the chromatic symmetric function with a natural deletion–contraction relation analogous to that of the chromatic polynomial. Using this relation we derive new properties of the chromatic symmetric function, and we give alternate proofs of many fundamental properties of XG.
AbstractList We extend the definition of the chromatic symmetric function XG to include graphs G with a vertex-weight function w:V(G)→N. We show how this provides the chromatic symmetric function with a natural deletion–contraction relation analogous to that of the chromatic polynomial. Using this relation we derive new properties of the chromatic symmetric function, and we give alternate proofs of many fundamental properties of XG.
ArticleNumber 103143
Author Spirkl, Sophie
Crew, Logan
Author_xml – sequence: 1
  givenname: Logan
  surname: Crew
  fullname: Crew, Logan
  email: crewl@math.upenn.edu
  organization: Department of Mathematics, University of Pennsylvania, Philadelphia, PA, United States of America
– sequence: 2
  givenname: Sophie
  orcidid: 0000-0002-2536-5618
  surname: Spirkl
  fullname: Spirkl, Sophie
  email: sspirkl@math.princeton.edu
  organization: Department of Mathematics, Princeton University, Princeton, NJ, United States of America
BookMark eNp9kM1OwzAMx3MYEtvgAbj1BTripE1bcZomBpMmcYFz1KaOlqptUBKQduMdeEOehHTjxGGyLH_IP8v-L8hstCMScgd0BRTEfbfCTq0YZVPNIeMzMqdQ5akQVXlNFt53lALknM_Jdp202GMwdvz5-lZ2DK5WU5U47OtToq1LwgETdXB2iC2V-OMwYHAx0x_jafqGXOm693j7F5fkbfv4unlO9y9Pu816nyqe0ZCWjahEhRpomQFqIZoyr5s848iyIi94dKhYq0rNokHRtLqqmWKNbkDwpuVLUpz3Kme9d6ilMuF0Zrzb9BKonCSQnYwSyEkCeZYgkvCPfHdmqN3xIvNwZjC-9GnQSa8Mjgpb41AF2Vpzgf4F4J95vQ
CitedBy_id crossref_primary_10_1093_imrn_rnad149
crossref_primary_10_1016_j_ejc_2023_103788
crossref_primary_10_1016_j_aam_2021_102189
crossref_primary_10_1016_j_jcta_2021_105572
crossref_primary_10_1016_j_disc_2024_114096
crossref_primary_10_1016_j_aam_2024_102718
crossref_primary_10_1002_jgt_23060
crossref_primary_10_1016_j_laa_2024_03_013
crossref_primary_10_1016_j_dam_2022_10_012
crossref_primary_10_1016_j_disc_2023_113805
crossref_primary_10_1016_j_jcta_2022_105608
crossref_primary_10_1137_20M1380314
crossref_primary_10_1137_22M148046X
crossref_primary_10_1016_j_jcta_2021_105407
Cites_doi 10.1006/aima.1995.1020
10.1016/0012-365X(92)90040-M
10.1016/j.disc.2016.09.019
10.1016/0012-365X(73)90108-8
10.1023/A:1011258714032
10.5802/aif.1706
10.1016/j.disc.2013.12.006
10.1016/j.aim.2015.12.018
10.37236/6660
10.1016/S0012-365X(98)00146-0
10.1016/S0012-365X(96)83014-7
10.1016/j.disc.2018.09.001
10.1006/aima.1996.0018
10.1016/S0012-365X(96)00245-2
10.1137/17M1144805
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ejc.2020.103143
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_ejc_2020_103143
S0195669820300640
GroupedDBID --K
--M
-ET
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AATTM
AAXKI
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEXQZ
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSW
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c340t-8b6969ef10841ef66b85ab543e247573757192dc8f2f2f17bdf9a2c2bfb163bd3
IEDL.DBID AIKHN
ISSN 0195-6698
IngestDate Tue Jul 01 01:37:05 EDT 2025
Thu Apr 24 23:05:25 EDT 2025
Sun Apr 06 06:53:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-8b6969ef10841ef66b85ab543e247573757192dc8f2f2f17bdf9a2c2bfb163bd3
ORCID 0000-0002-2536-5618
OpenAccessLink http://hdl.handle.net/10012/18526
ParticipantIDs crossref_citationtrail_10_1016_j_ejc_2020_103143
crossref_primary_10_1016_j_ejc_2020_103143
elsevier_sciencedirect_doi_10_1016_j_ejc_2020_103143
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle European journal of combinatorics
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cho, Willigenburg (b4) 2016
Noble, Welsh (b22) 1999; 49
Alexandersson, Panova (b1) 2018; 341
Stanley (b30) 1998; 193
Foley, Hoàng, Merkel (b11) 2018
Macdonald (b20) 1998
Orellana, Scott (b23) 2014; 320
Grinberg (b14) 2017; 24
Shareshian, Wachs (b27) 2016; 295
Heil, Ji (b16) 2018
Paunov (b24) 2017
Chow (b5) 1996; 118
Logan Crew, Sophie Spirkl, Using deletion-contraction to construct graphs with equal chromatic symmetric function, in preparation.
Ellzey (b10) 2017
Guay-Paquet (b15) 2013
Loebl, Sereni (b19) 2019; 6
Dahlberg, Willigenburg (b9) 2019
Cho, Huh (b3) 2017
Dahlberg, Willigenburg (b8) 2018; 322
Pawlowski (b25) 2018
Lenart, Ray (b18) 1997; 167
Stanley (b29) 1995; 111
Wolfgang (b33) 1997
Kaliszewski (b17) 2014
.
Stanley (b31) 1999
Stanley (b28) 1973; 5
Aliste-Prieto, Mier, Zamora (b2) 2017; 340
Brendan McKay, Combinatorial Data, Brendan McKay’s Home Page, Australian National University
Wang, Wang (b32) 2020
Gasharov (b12) 1996; 157
Gebhard, Sagan (b13) 2001; 13
Dahlberg, She, Willigenburg (b7) 2019
Ray, Wright (b26) 1992; 103
Grinberg (10.1016/j.ejc.2020.103143_b14) 2017; 24
Lenart (10.1016/j.ejc.2020.103143_b18) 1997; 167
Foley (10.1016/j.ejc.2020.103143_b11) 2018
Dahlberg (10.1016/j.ejc.2020.103143_b7) 2019
10.1016/j.ejc.2020.103143_b21
Shareshian (10.1016/j.ejc.2020.103143_b27) 2016; 295
Cho (10.1016/j.ejc.2020.103143_b3) 2017
Alexandersson (10.1016/j.ejc.2020.103143_b1) 2018; 341
Stanley (10.1016/j.ejc.2020.103143_b30) 1998; 193
Wang (10.1016/j.ejc.2020.103143_b32) 2020
Heil (10.1016/j.ejc.2020.103143_b16) 2018
Loebl (10.1016/j.ejc.2020.103143_b19) 2019; 6
Gebhard (10.1016/j.ejc.2020.103143_b13) 2001; 13
Paunov (10.1016/j.ejc.2020.103143_b24) 2017
Kaliszewski (10.1016/j.ejc.2020.103143_b17) 2014
Ray (10.1016/j.ejc.2020.103143_b26) 1992; 103
Aliste-Prieto (10.1016/j.ejc.2020.103143_b2) 2017; 340
Dahlberg (10.1016/j.ejc.2020.103143_b8) 2018; 322
Macdonald (10.1016/j.ejc.2020.103143_b20) 1998
Wolfgang (10.1016/j.ejc.2020.103143_b33) 1997
Cho (10.1016/j.ejc.2020.103143_b4) 2016
Stanley (10.1016/j.ejc.2020.103143_b29) 1995; 111
10.1016/j.ejc.2020.103143_b6
Pawlowski (10.1016/j.ejc.2020.103143_b25) 2018
Gasharov (10.1016/j.ejc.2020.103143_b12) 1996; 157
Noble (10.1016/j.ejc.2020.103143_b22) 1999; 49
Ellzey (10.1016/j.ejc.2020.103143_b10) 2017
Guay-Paquet (10.1016/j.ejc.2020.103143_b15) 2013
Stanley (10.1016/j.ejc.2020.103143_b31) 1999
Stanley (10.1016/j.ejc.2020.103143_b28) 1973; 5
Dahlberg (10.1016/j.ejc.2020.103143_b9) 2019
Chow (10.1016/j.ejc.2020.103143_b5) 1996; 118
Orellana (10.1016/j.ejc.2020.103143_b23) 2014; 320
References_xml – volume: 340
  start-page: 1435
  year: 2017
  end-page: 1441
  ident: b2
  article-title: On trees with the same restricted U-polynomial and the Prouhet-Tarry-Escott problem
  publication-title: Discrete Math.
– year: 2017
  ident: b10
  article-title: A directed graph generalization of chromatic quasisymmetric functions
– volume: 118
  start-page: 71
  year: 1996
  end-page: 98
  ident: b5
  article-title: The path-cycle symmetric function of a digraph
  publication-title: Adv. Math.
– year: 2013
  ident: b15
  article-title: A modular relation for the chromatic symmetric functions of (3
– year: 2019
  ident: b7
  article-title: Schur and
– volume: 103
  start-page: 67
  year: 1992
  end-page: 74
  ident: b26
  article-title: Umbral interpolation and the addition/contraction tree for graphs
  publication-title: Discrete Math.
– volume: 13
  start-page: 227
  year: 2001
  end-page: 255
  ident: b13
  article-title: A chromatic symmetric function in noncommuting variables
  publication-title: J. Algebraic Combin.
– volume: 6
  start-page: 357
  year: 2019
  end-page: 384
  ident: b19
  article-title: Isomorphism of weighted trees and Stanley’s conjecture for caterpillars
  publication-title: Annales de l’Institute Henri Poincaré D
– year: 2018
  ident: b11
  article-title: Classes of graphs with e-positive chromatic symmetric function
– volume: 167
  start-page: 419
  year: 1997
  end-page: 444
  ident: b18
  article-title: Chromatic polynomials of partition systems
  publication-title: Discrete Math.
– year: 2017
  ident: b24
  article-title: Planar graphs and Stanley’s chromatic functions
– year: 1999
  ident: b31
  publication-title: Enumerative Combinatorics, Vol. 2
– reference: Brendan McKay, Combinatorial Data, Brendan McKay’s Home Page, Australian National University,
– year: 2017
  ident: b3
  article-title: On
– year: 2018
  ident: b25
  article-title: Chromatic symmetric functions via the group algebra of
– year: 2018
  ident: b16
  article-title: On an algorithm for comparing the chromatic symmetric functions of trees
– volume: 5
  start-page: 171
  year: 1973
  end-page: 178
  ident: b28
  article-title: Acyclic orientations of graphs
  publication-title: Discrete Math.
– volume: 111
  start-page: 166
  year: 1995
  end-page: 194
  ident: b29
  article-title: A symmetric function generalization of the chromatic polynomial of a graph
  publication-title: Adv. Math.
– volume: 49
  year: 1999
  ident: b22
  article-title: A weighted graph polynomial from chromatic invariants of knots
  publication-title: Ann. Inst. Fourier
– volume: 322
  start-page: 1029
  year: 2018
  end-page: 1039
  ident: b8
  article-title: Lollipop and lariat symmetric functions
  publication-title: SIAM J. Discrete Math.
– volume: 24
  start-page: P2
  year: 2017
  end-page: 22
  ident: b14
  article-title: Double posets and the antipode of QSym
  publication-title: Electron. J. Combin.
– year: 1998
  ident: b20
  article-title: Symmetric Functions and Hall Polynomials
– year: 2016
  ident: b4
  article-title: Chromatic classical symmetric functions
– volume: 320
  start-page: 1
  year: 2014
  end-page: 14
  ident: b23
  article-title: Graphs with equal chromatic symmetric functions
  publication-title: Discrete Math.
– volume: 341
  start-page: 3453
  year: 2018
  end-page: 3482
  ident: b1
  article-title: LLT polynomials chromatic quasisymmetric functions and graphs with cycles
  publication-title: Discrete Math.
– year: 2019
  ident: b9
  article-title: Chromatic symmetric functions in noncommuting variables revisited
– reference: Logan Crew, Sophie Spirkl, Using deletion-contraction to construct graphs with equal chromatic symmetric function, in preparation.
– year: 2014
  ident: b17
  article-title: Hook coefficients of chromatic functions
– reference: .
– volume: 295
  start-page: 497
  year: 2016
  end-page: 551
  ident: b27
  article-title: Chromatic quasisymmetric functions
  publication-title: Adv. Math.
– year: 2020
  ident: b32
  article-title: Non-Schur-positivity of chromatic symmetric functions
– volume: 157
  start-page: 193
  year: 1996
  end-page: 197
  ident: b12
  article-title: Incomparability graphs of (3
  publication-title: Discrete Math.
– volume: 193
  start-page: 267
  year: 1998
  end-page: 286
  ident: b30
  article-title: Graph colorings and related symmetric functions: ideas and applications. A description of results, interesting applications, & notable open problems
  publication-title: Discrete Math.
– year: 1997
  ident: b33
  article-title: Two Interactions Between Combinatorics and Representation Theory: Monomial Immanants and Hochschild Cohomology
– year: 2018
  ident: 10.1016/j.ejc.2020.103143_b11
– year: 2013
  ident: 10.1016/j.ejc.2020.103143_b15
– year: 2018
  ident: 10.1016/j.ejc.2020.103143_b16
– year: 2017
  ident: 10.1016/j.ejc.2020.103143_b3
– volume: 111
  start-page: 166
  issue: 1
  year: 1995
  ident: 10.1016/j.ejc.2020.103143_b29
  article-title: A symmetric function generalization of the chromatic polynomial of a graph
  publication-title: Adv. Math.
  doi: 10.1006/aima.1995.1020
– year: 2014
  ident: 10.1016/j.ejc.2020.103143_b17
– year: 1997
  ident: 10.1016/j.ejc.2020.103143_b33
– year: 2018
  ident: 10.1016/j.ejc.2020.103143_b25
– volume: 103
  start-page: 67
  issue: 1
  year: 1992
  ident: 10.1016/j.ejc.2020.103143_b26
  article-title: Umbral interpolation and the addition/contraction tree for graphs
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(92)90040-M
– ident: 10.1016/j.ejc.2020.103143_b6
– year: 1999
  ident: 10.1016/j.ejc.2020.103143_b31
– volume: 340
  start-page: 1435
  issue: 6
  year: 2017
  ident: 10.1016/j.ejc.2020.103143_b2
  article-title: On trees with the same restricted U-polynomial and the Prouhet-Tarry-Escott problem
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2016.09.019
– volume: 5
  start-page: 171
  issue: 2
  year: 1973
  ident: 10.1016/j.ejc.2020.103143_b28
  article-title: Acyclic orientations of graphs
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(73)90108-8
– volume: 13
  start-page: 227
  issue: 3
  year: 2001
  ident: 10.1016/j.ejc.2020.103143_b13
  article-title: A chromatic symmetric function in noncommuting variables
  publication-title: J. Algebraic Combin.
  doi: 10.1023/A:1011258714032
– year: 2019
  ident: 10.1016/j.ejc.2020.103143_b9
– volume: 49
  issue: 3
  year: 1999
  ident: 10.1016/j.ejc.2020.103143_b22
  article-title: A weighted graph polynomial from chromatic invariants of knots
  publication-title: Ann. Inst. Fourier
  doi: 10.5802/aif.1706
– year: 1998
  ident: 10.1016/j.ejc.2020.103143_b20
– volume: 320
  start-page: 1
  year: 2014
  ident: 10.1016/j.ejc.2020.103143_b23
  article-title: Graphs with equal chromatic symmetric functions
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2013.12.006
– year: 2017
  ident: 10.1016/j.ejc.2020.103143_b24
– volume: 295
  start-page: 497
  year: 2016
  ident: 10.1016/j.ejc.2020.103143_b27
  article-title: Chromatic quasisymmetric functions
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2015.12.018
– volume: 24
  start-page: P2
  issue: 2
  year: 2017
  ident: 10.1016/j.ejc.2020.103143_b14
  article-title: Double posets and the antipode of QSym
  publication-title: Electron. J. Combin.
  doi: 10.37236/6660
– volume: 193
  start-page: 267
  issue: 1–3
  year: 1998
  ident: 10.1016/j.ejc.2020.103143_b30
  article-title: Graph colorings and related symmetric functions: ideas and applications. A description of results, interesting applications, & notable open problems
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(98)00146-0
– volume: 157
  start-page: 193
  issue: 1–3
  year: 1996
  ident: 10.1016/j.ejc.2020.103143_b12
  article-title: Incomparability graphs of (3+1)-free posets are s-positive
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(96)83014-7
– year: 2016
  ident: 10.1016/j.ejc.2020.103143_b4
– year: 2019
  ident: 10.1016/j.ejc.2020.103143_b7
– volume: 341
  start-page: 3453
  issue: 12
  year: 2018
  ident: 10.1016/j.ejc.2020.103143_b1
  article-title: LLT polynomials chromatic quasisymmetric functions and graphs with cycles
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2018.09.001
– year: 2020
  ident: 10.1016/j.ejc.2020.103143_b32
– volume: 6
  start-page: 357
  issue: 3
  year: 2019
  ident: 10.1016/j.ejc.2020.103143_b19
  article-title: Isomorphism of weighted trees and Stanley’s conjecture for caterpillars
  publication-title: Annales de l’Institute Henri Poincaré D
– volume: 118
  start-page: 71
  issue: 1
  year: 1996
  ident: 10.1016/j.ejc.2020.103143_b5
  article-title: The path-cycle symmetric function of a digraph
  publication-title: Adv. Math.
  doi: 10.1006/aima.1996.0018
– volume: 167
  start-page: 419
  year: 1997
  ident: 10.1016/j.ejc.2020.103143_b18
  article-title: Chromatic polynomials of partition systems
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(96)00245-2
– volume: 322
  start-page: 1029
  year: 2018
  ident: 10.1016/j.ejc.2020.103143_b8
  article-title: Lollipop and lariat symmetric functions
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/17M1144805
– year: 2017
  ident: 10.1016/j.ejc.2020.103143_b10
– ident: 10.1016/j.ejc.2020.103143_b21
SSID ssj0011533
Score 2.4267852
Snippet We extend the definition of the chromatic symmetric function XG to include graphs G with a vertex-weight function w:V(G)→N. We show how this provides the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103143
Title A deletion–contraction relation for the chromatic symmetric function
URI https://dx.doi.org/10.1016/j.ejc.2020.103143
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFL3UdqML8Yn1UWbhSohNJjPJzLIWS2tpF2qxu5CZTLDFPmjrwo34D_6hX-LMJCkK6sKEEDLMgXAS7j1wXwDnKSM4IWHgSMyxQ1RCHBZT4UiSMEIFk8xGTHv9oD0gN0M6LEGzqIUxaZW57c9surXW-Uo9Z7M-H43qd7bULeDahfk2HrUBFezzgJah0uh02_11MMFImmIsoQEUwU2b5qXGppEhttXntnbnJ_f0xeW0dmA714qokb3OLpTUdA-2eutGq8t9aDWQmWRj2P14e7d551mlAlrkWW5Iq1KkEUg-LmYWhpYvk4kZpCWR8Wpm0wEMWtf3zbaTj0ZwpE_clcNEwAOuUs9lxFNpEAhGY0GJrzAJaejrS0u3RLIU69MLRZLyGEssUqEFmEj8QyhPZ1N1BEgIn7KEKoxZQvQRp9hNQ6lln-CKu3EV3IKRSOZ9w834iqeoSBAbR5rEyJAYZSRW4WINmWdNM_7aTAqao29fPtJG_XfY8f9gJ7BpnrJ0vFMorxbP6kzLipWowcblq1fLfx5z794-dPVqZ3j1Cfzhzmc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qPagH8Yn1uQdPQmi62d1sjrVYWm17sYXeluwLW-yDth68-R_8h_4SdzdJUVAPJuSSzED4EmY-mG9mALg2DCOFYxpIlKAAa4UDlhIRSKwYJoJJ5ium3R5tDfD9kAxLoFH0wjhZZR77s5juo3V-p5qjWZ2PRtVH3-pGE5vCIl-P2gCblg1QN0C_PbxdlxIcoSmWEjrzorTpRV567MYYIt977jt3fkpOXxJOcw_s5kwR1rOX2QclPT0AO931mNXlIWjWodtj47D9eHv3qvOsTwEuco0btJwUWg8onxYz7waXr5OJW6MloctpzugIDJp3_UYryBcjBDLC4SpggiY00aYWMlzThlLBSCoIjjTCMYkje1nipiQzyJ61WCiTpEgiYYSlX0JFx6A8nU31CYBCRIQpohFiCtsjNSg0sbSkTyQ6CdMKCAtEuMynhrvlFc-8kIeNuQWROxB5BmIF3Kxd5tnIjL-McQEz__bduQ3pv7ud_s_tCmy1-t0O77R7D2dg2z3JhHnnoLxavOgLSzBW4tL_QJ-JPsyY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deletion%E2%80%93contraction+relation+for+the+chromatic+symmetric+function&rft.jtitle=European+journal+of+combinatorics&rft.au=Crew%2C+Logan&rft.au=Spirkl%2C+Sophie&rft.date=2020-10-01&rft.pub=Elsevier+Ltd&rft.issn=0195-6698&rft.volume=89&rft_id=info:doi/10.1016%2Fj.ejc.2020.103143&rft.externalDocID=S0195669820300640
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-6698&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-6698&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-6698&client=summon