A deletion–contraction relation for the chromatic symmetric function
We extend the definition of the chromatic symmetric function XG to include graphs G with a vertex-weight function w:V(G)→N. We show how this provides the chromatic symmetric function with a natural deletion–contraction relation analogous to that of the chromatic polynomial. Using this relation we de...
Saved in:
Published in | European journal of combinatorics Vol. 89; p. 103143 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2020
|
Online Access | Get full text |
ISSN | 0195-6698 |
DOI | 10.1016/j.ejc.2020.103143 |
Cover
Abstract | We extend the definition of the chromatic symmetric function XG to include graphs G with a vertex-weight function w:V(G)→N. We show how this provides the chromatic symmetric function with a natural deletion–contraction relation analogous to that of the chromatic polynomial. Using this relation we derive new properties of the chromatic symmetric function, and we give alternate proofs of many fundamental properties of XG. |
---|---|
AbstractList | We extend the definition of the chromatic symmetric function XG to include graphs G with a vertex-weight function w:V(G)→N. We show how this provides the chromatic symmetric function with a natural deletion–contraction relation analogous to that of the chromatic polynomial. Using this relation we derive new properties of the chromatic symmetric function, and we give alternate proofs of many fundamental properties of XG. |
ArticleNumber | 103143 |
Author | Spirkl, Sophie Crew, Logan |
Author_xml | – sequence: 1 givenname: Logan surname: Crew fullname: Crew, Logan email: crewl@math.upenn.edu organization: Department of Mathematics, University of Pennsylvania, Philadelphia, PA, United States of America – sequence: 2 givenname: Sophie orcidid: 0000-0002-2536-5618 surname: Spirkl fullname: Spirkl, Sophie email: sspirkl@math.princeton.edu organization: Department of Mathematics, Princeton University, Princeton, NJ, United States of America |
BookMark | eNp9kM1OwzAMx3MYEtvgAbj1BTripE1bcZomBpMmcYFz1KaOlqptUBKQduMdeEOehHTjxGGyLH_IP8v-L8hstCMScgd0BRTEfbfCTq0YZVPNIeMzMqdQ5akQVXlNFt53lALknM_Jdp202GMwdvz5-lZ2DK5WU5U47OtToq1LwgETdXB2iC2V-OMwYHAx0x_jafqGXOm693j7F5fkbfv4unlO9y9Pu816nyqe0ZCWjahEhRpomQFqIZoyr5s848iyIi94dKhYq0rNokHRtLqqmWKNbkDwpuVLUpz3Kme9d6ilMuF0Zrzb9BKonCSQnYwSyEkCeZYgkvCPfHdmqN3xIvNwZjC-9GnQSa8Mjgpb41AF2Vpzgf4F4J95vQ |
CitedBy_id | crossref_primary_10_1093_imrn_rnad149 crossref_primary_10_1016_j_ejc_2023_103788 crossref_primary_10_1016_j_aam_2021_102189 crossref_primary_10_1016_j_jcta_2021_105572 crossref_primary_10_1016_j_disc_2024_114096 crossref_primary_10_1016_j_aam_2024_102718 crossref_primary_10_1002_jgt_23060 crossref_primary_10_1016_j_laa_2024_03_013 crossref_primary_10_1016_j_dam_2022_10_012 crossref_primary_10_1016_j_disc_2023_113805 crossref_primary_10_1016_j_jcta_2022_105608 crossref_primary_10_1137_20M1380314 crossref_primary_10_1137_22M148046X crossref_primary_10_1016_j_jcta_2021_105407 |
Cites_doi | 10.1006/aima.1995.1020 10.1016/0012-365X(92)90040-M 10.1016/j.disc.2016.09.019 10.1016/0012-365X(73)90108-8 10.1023/A:1011258714032 10.5802/aif.1706 10.1016/j.disc.2013.12.006 10.1016/j.aim.2015.12.018 10.37236/6660 10.1016/S0012-365X(98)00146-0 10.1016/S0012-365X(96)83014-7 10.1016/j.disc.2018.09.001 10.1006/aima.1996.0018 10.1016/S0012-365X(96)00245-2 10.1137/17M1144805 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ejc.2020.103143 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | 10_1016_j_ejc_2020_103143 S0195669820300640 |
GroupedDBID | --K --M -ET -~X .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AATTM AAXKI AAXUO ABAOU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ADBBV ADEZE ADFGL ADIYS ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEXQZ AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSW SSZ T5K WUQ XPP ZMT ZU3 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c340t-8b6969ef10841ef66b85ab543e247573757192dc8f2f2f17bdf9a2c2bfb163bd3 |
IEDL.DBID | AIKHN |
ISSN | 0195-6698 |
IngestDate | Tue Jul 01 01:37:05 EDT 2025 Thu Apr 24 23:05:25 EDT 2025 Sun Apr 06 06:53:05 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-8b6969ef10841ef66b85ab543e247573757192dc8f2f2f17bdf9a2c2bfb163bd3 |
ORCID | 0000-0002-2536-5618 |
OpenAccessLink | http://hdl.handle.net/10012/18526 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ejc_2020_103143 crossref_primary_10_1016_j_ejc_2020_103143 elsevier_sciencedirect_doi_10_1016_j_ejc_2020_103143 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationTitle | European journal of combinatorics |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Cho, Willigenburg (b4) 2016 Noble, Welsh (b22) 1999; 49 Alexandersson, Panova (b1) 2018; 341 Stanley (b30) 1998; 193 Foley, Hoàng, Merkel (b11) 2018 Macdonald (b20) 1998 Orellana, Scott (b23) 2014; 320 Grinberg (b14) 2017; 24 Shareshian, Wachs (b27) 2016; 295 Heil, Ji (b16) 2018 Paunov (b24) 2017 Chow (b5) 1996; 118 Logan Crew, Sophie Spirkl, Using deletion-contraction to construct graphs with equal chromatic symmetric function, in preparation. Ellzey (b10) 2017 Guay-Paquet (b15) 2013 Loebl, Sereni (b19) 2019; 6 Dahlberg, Willigenburg (b9) 2019 Cho, Huh (b3) 2017 Dahlberg, Willigenburg (b8) 2018; 322 Pawlowski (b25) 2018 Lenart, Ray (b18) 1997; 167 Stanley (b29) 1995; 111 Wolfgang (b33) 1997 Kaliszewski (b17) 2014 . Stanley (b31) 1999 Stanley (b28) 1973; 5 Aliste-Prieto, Mier, Zamora (b2) 2017; 340 Brendan McKay, Combinatorial Data, Brendan McKay’s Home Page, Australian National University Wang, Wang (b32) 2020 Gasharov (b12) 1996; 157 Gebhard, Sagan (b13) 2001; 13 Dahlberg, She, Willigenburg (b7) 2019 Ray, Wright (b26) 1992; 103 Grinberg (10.1016/j.ejc.2020.103143_b14) 2017; 24 Lenart (10.1016/j.ejc.2020.103143_b18) 1997; 167 Foley (10.1016/j.ejc.2020.103143_b11) 2018 Dahlberg (10.1016/j.ejc.2020.103143_b7) 2019 10.1016/j.ejc.2020.103143_b21 Shareshian (10.1016/j.ejc.2020.103143_b27) 2016; 295 Cho (10.1016/j.ejc.2020.103143_b3) 2017 Alexandersson (10.1016/j.ejc.2020.103143_b1) 2018; 341 Stanley (10.1016/j.ejc.2020.103143_b30) 1998; 193 Wang (10.1016/j.ejc.2020.103143_b32) 2020 Heil (10.1016/j.ejc.2020.103143_b16) 2018 Loebl (10.1016/j.ejc.2020.103143_b19) 2019; 6 Gebhard (10.1016/j.ejc.2020.103143_b13) 2001; 13 Paunov (10.1016/j.ejc.2020.103143_b24) 2017 Kaliszewski (10.1016/j.ejc.2020.103143_b17) 2014 Ray (10.1016/j.ejc.2020.103143_b26) 1992; 103 Aliste-Prieto (10.1016/j.ejc.2020.103143_b2) 2017; 340 Dahlberg (10.1016/j.ejc.2020.103143_b8) 2018; 322 Macdonald (10.1016/j.ejc.2020.103143_b20) 1998 Wolfgang (10.1016/j.ejc.2020.103143_b33) 1997 Cho (10.1016/j.ejc.2020.103143_b4) 2016 Stanley (10.1016/j.ejc.2020.103143_b29) 1995; 111 10.1016/j.ejc.2020.103143_b6 Pawlowski (10.1016/j.ejc.2020.103143_b25) 2018 Gasharov (10.1016/j.ejc.2020.103143_b12) 1996; 157 Noble (10.1016/j.ejc.2020.103143_b22) 1999; 49 Ellzey (10.1016/j.ejc.2020.103143_b10) 2017 Guay-Paquet (10.1016/j.ejc.2020.103143_b15) 2013 Stanley (10.1016/j.ejc.2020.103143_b31) 1999 Stanley (10.1016/j.ejc.2020.103143_b28) 1973; 5 Dahlberg (10.1016/j.ejc.2020.103143_b9) 2019 Chow (10.1016/j.ejc.2020.103143_b5) 1996; 118 Orellana (10.1016/j.ejc.2020.103143_b23) 2014; 320 |
References_xml | – volume: 340 start-page: 1435 year: 2017 end-page: 1441 ident: b2 article-title: On trees with the same restricted U-polynomial and the Prouhet-Tarry-Escott problem publication-title: Discrete Math. – year: 2017 ident: b10 article-title: A directed graph generalization of chromatic quasisymmetric functions – volume: 118 start-page: 71 year: 1996 end-page: 98 ident: b5 article-title: The path-cycle symmetric function of a digraph publication-title: Adv. Math. – year: 2013 ident: b15 article-title: A modular relation for the chromatic symmetric functions of (3 – year: 2019 ident: b7 article-title: Schur and – volume: 103 start-page: 67 year: 1992 end-page: 74 ident: b26 article-title: Umbral interpolation and the addition/contraction tree for graphs publication-title: Discrete Math. – volume: 13 start-page: 227 year: 2001 end-page: 255 ident: b13 article-title: A chromatic symmetric function in noncommuting variables publication-title: J. Algebraic Combin. – volume: 6 start-page: 357 year: 2019 end-page: 384 ident: b19 article-title: Isomorphism of weighted trees and Stanley’s conjecture for caterpillars publication-title: Annales de l’Institute Henri Poincaré D – year: 2018 ident: b11 article-title: Classes of graphs with e-positive chromatic symmetric function – volume: 167 start-page: 419 year: 1997 end-page: 444 ident: b18 article-title: Chromatic polynomials of partition systems publication-title: Discrete Math. – year: 2017 ident: b24 article-title: Planar graphs and Stanley’s chromatic functions – year: 1999 ident: b31 publication-title: Enumerative Combinatorics, Vol. 2 – reference: Brendan McKay, Combinatorial Data, Brendan McKay’s Home Page, Australian National University, – year: 2017 ident: b3 article-title: On – year: 2018 ident: b25 article-title: Chromatic symmetric functions via the group algebra of – year: 2018 ident: b16 article-title: On an algorithm for comparing the chromatic symmetric functions of trees – volume: 5 start-page: 171 year: 1973 end-page: 178 ident: b28 article-title: Acyclic orientations of graphs publication-title: Discrete Math. – volume: 111 start-page: 166 year: 1995 end-page: 194 ident: b29 article-title: A symmetric function generalization of the chromatic polynomial of a graph publication-title: Adv. Math. – volume: 49 year: 1999 ident: b22 article-title: A weighted graph polynomial from chromatic invariants of knots publication-title: Ann. Inst. Fourier – volume: 322 start-page: 1029 year: 2018 end-page: 1039 ident: b8 article-title: Lollipop and lariat symmetric functions publication-title: SIAM J. Discrete Math. – volume: 24 start-page: P2 year: 2017 end-page: 22 ident: b14 article-title: Double posets and the antipode of QSym publication-title: Electron. J. Combin. – year: 1998 ident: b20 article-title: Symmetric Functions and Hall Polynomials – year: 2016 ident: b4 article-title: Chromatic classical symmetric functions – volume: 320 start-page: 1 year: 2014 end-page: 14 ident: b23 article-title: Graphs with equal chromatic symmetric functions publication-title: Discrete Math. – volume: 341 start-page: 3453 year: 2018 end-page: 3482 ident: b1 article-title: LLT polynomials chromatic quasisymmetric functions and graphs with cycles publication-title: Discrete Math. – year: 2019 ident: b9 article-title: Chromatic symmetric functions in noncommuting variables revisited – reference: Logan Crew, Sophie Spirkl, Using deletion-contraction to construct graphs with equal chromatic symmetric function, in preparation. – year: 2014 ident: b17 article-title: Hook coefficients of chromatic functions – reference: . – volume: 295 start-page: 497 year: 2016 end-page: 551 ident: b27 article-title: Chromatic quasisymmetric functions publication-title: Adv. Math. – year: 2020 ident: b32 article-title: Non-Schur-positivity of chromatic symmetric functions – volume: 157 start-page: 193 year: 1996 end-page: 197 ident: b12 article-title: Incomparability graphs of (3 publication-title: Discrete Math. – volume: 193 start-page: 267 year: 1998 end-page: 286 ident: b30 article-title: Graph colorings and related symmetric functions: ideas and applications. A description of results, interesting applications, & notable open problems publication-title: Discrete Math. – year: 1997 ident: b33 article-title: Two Interactions Between Combinatorics and Representation Theory: Monomial Immanants and Hochschild Cohomology – year: 2018 ident: 10.1016/j.ejc.2020.103143_b11 – year: 2013 ident: 10.1016/j.ejc.2020.103143_b15 – year: 2018 ident: 10.1016/j.ejc.2020.103143_b16 – year: 2017 ident: 10.1016/j.ejc.2020.103143_b3 – volume: 111 start-page: 166 issue: 1 year: 1995 ident: 10.1016/j.ejc.2020.103143_b29 article-title: A symmetric function generalization of the chromatic polynomial of a graph publication-title: Adv. Math. doi: 10.1006/aima.1995.1020 – year: 2014 ident: 10.1016/j.ejc.2020.103143_b17 – year: 1997 ident: 10.1016/j.ejc.2020.103143_b33 – year: 2018 ident: 10.1016/j.ejc.2020.103143_b25 – volume: 103 start-page: 67 issue: 1 year: 1992 ident: 10.1016/j.ejc.2020.103143_b26 article-title: Umbral interpolation and the addition/contraction tree for graphs publication-title: Discrete Math. doi: 10.1016/0012-365X(92)90040-M – ident: 10.1016/j.ejc.2020.103143_b6 – year: 1999 ident: 10.1016/j.ejc.2020.103143_b31 – volume: 340 start-page: 1435 issue: 6 year: 2017 ident: 10.1016/j.ejc.2020.103143_b2 article-title: On trees with the same restricted U-polynomial and the Prouhet-Tarry-Escott problem publication-title: Discrete Math. doi: 10.1016/j.disc.2016.09.019 – volume: 5 start-page: 171 issue: 2 year: 1973 ident: 10.1016/j.ejc.2020.103143_b28 article-title: Acyclic orientations of graphs publication-title: Discrete Math. doi: 10.1016/0012-365X(73)90108-8 – volume: 13 start-page: 227 issue: 3 year: 2001 ident: 10.1016/j.ejc.2020.103143_b13 article-title: A chromatic symmetric function in noncommuting variables publication-title: J. Algebraic Combin. doi: 10.1023/A:1011258714032 – year: 2019 ident: 10.1016/j.ejc.2020.103143_b9 – volume: 49 issue: 3 year: 1999 ident: 10.1016/j.ejc.2020.103143_b22 article-title: A weighted graph polynomial from chromatic invariants of knots publication-title: Ann. Inst. Fourier doi: 10.5802/aif.1706 – year: 1998 ident: 10.1016/j.ejc.2020.103143_b20 – volume: 320 start-page: 1 year: 2014 ident: 10.1016/j.ejc.2020.103143_b23 article-title: Graphs with equal chromatic symmetric functions publication-title: Discrete Math. doi: 10.1016/j.disc.2013.12.006 – year: 2017 ident: 10.1016/j.ejc.2020.103143_b24 – volume: 295 start-page: 497 year: 2016 ident: 10.1016/j.ejc.2020.103143_b27 article-title: Chromatic quasisymmetric functions publication-title: Adv. Math. doi: 10.1016/j.aim.2015.12.018 – volume: 24 start-page: P2 issue: 2 year: 2017 ident: 10.1016/j.ejc.2020.103143_b14 article-title: Double posets and the antipode of QSym publication-title: Electron. J. Combin. doi: 10.37236/6660 – volume: 193 start-page: 267 issue: 1–3 year: 1998 ident: 10.1016/j.ejc.2020.103143_b30 article-title: Graph colorings and related symmetric functions: ideas and applications. A description of results, interesting applications, & notable open problems publication-title: Discrete Math. doi: 10.1016/S0012-365X(98)00146-0 – volume: 157 start-page: 193 issue: 1–3 year: 1996 ident: 10.1016/j.ejc.2020.103143_b12 article-title: Incomparability graphs of (3+1)-free posets are s-positive publication-title: Discrete Math. doi: 10.1016/S0012-365X(96)83014-7 – year: 2016 ident: 10.1016/j.ejc.2020.103143_b4 – year: 2019 ident: 10.1016/j.ejc.2020.103143_b7 – volume: 341 start-page: 3453 issue: 12 year: 2018 ident: 10.1016/j.ejc.2020.103143_b1 article-title: LLT polynomials chromatic quasisymmetric functions and graphs with cycles publication-title: Discrete Math. doi: 10.1016/j.disc.2018.09.001 – year: 2020 ident: 10.1016/j.ejc.2020.103143_b32 – volume: 6 start-page: 357 issue: 3 year: 2019 ident: 10.1016/j.ejc.2020.103143_b19 article-title: Isomorphism of weighted trees and Stanley’s conjecture for caterpillars publication-title: Annales de l’Institute Henri Poincaré D – volume: 118 start-page: 71 issue: 1 year: 1996 ident: 10.1016/j.ejc.2020.103143_b5 article-title: The path-cycle symmetric function of a digraph publication-title: Adv. Math. doi: 10.1006/aima.1996.0018 – volume: 167 start-page: 419 year: 1997 ident: 10.1016/j.ejc.2020.103143_b18 article-title: Chromatic polynomials of partition systems publication-title: Discrete Math. doi: 10.1016/S0012-365X(96)00245-2 – volume: 322 start-page: 1029 year: 2018 ident: 10.1016/j.ejc.2020.103143_b8 article-title: Lollipop and lariat symmetric functions publication-title: SIAM J. Discrete Math. doi: 10.1137/17M1144805 – year: 2017 ident: 10.1016/j.ejc.2020.103143_b10 – ident: 10.1016/j.ejc.2020.103143_b21 |
SSID | ssj0011533 |
Score | 2.4267852 |
Snippet | We extend the definition of the chromatic symmetric function XG to include graphs G with a vertex-weight function w:V(G)→N. We show how this provides the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103143 |
Title | A deletion–contraction relation for the chromatic symmetric function |
URI | https://dx.doi.org/10.1016/j.ejc.2020.103143 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFL3UdqML8Yn1UWbhSohNJjPJzLIWS2tpF2qxu5CZTLDFPmjrwo34D_6hX-LMJCkK6sKEEDLMgXAS7j1wXwDnKSM4IWHgSMyxQ1RCHBZT4UiSMEIFk8xGTHv9oD0gN0M6LEGzqIUxaZW57c9surXW-Uo9Z7M-H43qd7bULeDahfk2HrUBFezzgJah0uh02_11MMFImmIsoQEUwU2b5qXGppEhttXntnbnJ_f0xeW0dmA714qokb3OLpTUdA-2eutGq8t9aDWQmWRj2P14e7d551mlAlrkWW5Iq1KkEUg-LmYWhpYvk4kZpCWR8Wpm0wEMWtf3zbaTj0ZwpE_clcNEwAOuUs9lxFNpEAhGY0GJrzAJaejrS0u3RLIU69MLRZLyGEssUqEFmEj8QyhPZ1N1BEgIn7KEKoxZQvQRp9hNQ6lln-CKu3EV3IKRSOZ9w834iqeoSBAbR5rEyJAYZSRW4WINmWdNM_7aTAqao29fPtJG_XfY8f9gJ7BpnrJ0vFMorxbP6kzLipWowcblq1fLfx5z794-dPVqZ3j1Cfzhzmc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qPagH8Yn1uQdPQmi62d1sjrVYWm17sYXeluwLW-yDth68-R_8h_4SdzdJUVAPJuSSzED4EmY-mG9mALg2DCOFYxpIlKAAa4UDlhIRSKwYJoJJ5ium3R5tDfD9kAxLoFH0wjhZZR77s5juo3V-p5qjWZ2PRtVH3-pGE5vCIl-P2gCblg1QN0C_PbxdlxIcoSmWEjrzorTpRV567MYYIt977jt3fkpOXxJOcw_s5kwR1rOX2QclPT0AO931mNXlIWjWodtj47D9eHv3qvOsTwEuco0btJwUWg8onxYz7waXr5OJW6MloctpzugIDJp3_UYryBcjBDLC4SpggiY00aYWMlzThlLBSCoIjjTCMYkje1nipiQzyJ61WCiTpEgiYYSlX0JFx6A8nU31CYBCRIQpohFiCtsjNSg0sbSkTyQ6CdMKCAtEuMynhrvlFc-8kIeNuQWROxB5BmIF3Kxd5tnIjL-McQEz__bduQ3pv7ud_s_tCmy1-t0O77R7D2dg2z3JhHnnoLxavOgLSzBW4tL_QJ-JPsyY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deletion%E2%80%93contraction+relation+for+the+chromatic+symmetric+function&rft.jtitle=European+journal+of+combinatorics&rft.au=Crew%2C+Logan&rft.au=Spirkl%2C+Sophie&rft.date=2020-10-01&rft.pub=Elsevier+Ltd&rft.issn=0195-6698&rft.volume=89&rft_id=info:doi/10.1016%2Fj.ejc.2020.103143&rft.externalDocID=S0195669820300640 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-6698&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-6698&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-6698&client=summon |