The Effect of NAPRTase Overexpression on the Total Levels of NAD, The NADH/NAD + Ratio, and the Distribution of Metabolites in Escherichia coli
Escherichia coli ( E. coli) maintains its total NADH NAD + intracellular pool by synthesizing NAD through the de novo pathway and the pyridine nucleotide salvage pathway. The salvage pathway recycles intracellular NAD breakdown products and preformed pyridine compounds from the environment, such as...
Saved in:
Published in | Metabolic engineering Vol. 4; no. 3; pp. 238 - 247 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Belgium
Elsevier Inc
01.07.2002
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Escherichia coli (
E. coli) maintains its total NADH NAD
+ intracellular pool by synthesizing NAD through the
de novo pathway and the pyridine nucleotide salvage pathway. The salvage pathway recycles intracellular NAD breakdown products and preformed pyridine compounds from the environment, such as nicotinic acid (NA). The enzyme nicotinic acid phosphoribosyltransferase (NAPRTase; EC 2.4.2.11), encoded by the
pncB gene, catalyzes the formation of nicotinate mononucleotide (NAMN), a direct precursor of NAD, from NA. This reaction is believed to be the rate-limiting step in the NAD salvage pathway. The current study investigates the effect of overexpressing the
pncB gene from
Salmonella typhimurium on the total levels of NAD, the NADH/NAD
+ ratio, and the production of different metabolites in
E. coli under anaerobic chemostat conditions and anaerobic tube experiments. In addition, this paper studies the effect of combining the overexpression of the
pncB gene with an NADH regeneration strategy that increases intracellular NADH availability, as we have previously shown. (The effect of increasing NADH availability on the redistribution of metabolic fluxes in
Escherichia coli chemostat cultures,
Metabolic Eng. 4, 230–237; Metabolic engineering of
Escherichia coli: Increase of NADH availability by overexpressing an NAD
+-dependent formate dehydrogenase,
Metabolic Eng. 4, 217–229.) Overexpression of the
pncB gene in chemostat experiments increased the total NAD levels, decreased the NADH/NAD
+ ratio, and did not significantly redistribute the metabolic fluxes. However, under anaerobic tube conditions, overexpression of the
pncB gene led to a significant shift in the metabolic patterns as evidenced by a decrease in lactate production and an increase as high as two-fold in the ethanol-to-acetate (Et/Ac) ratio. These results suggest that under chemostat conditions the total level of NAD is not limiting and the metabolic rates are fixed by the system at steady state. On the other hand, under transient conditions (such as those in batch cultivation) the increase in the total level of NAD can increase the rate of NADH-dependent pathways (ethanol) and therefore change the final distribution of metabolites. The effect of combining overexpression of the
pncB gene with the substitution of the native cofactor-independent formate dehydrogenase (FDH) with an NAD
+-dependent FDH was also investigated under anaerobic tube conditions. This manipulation produced a metabolic pattern that combines a high Et/Ac ratio similar to that obtained with the new FDH with an intermediate lactate level similar to that obtained with the overexpression of the
pncB gene. It was found that addition of the
pncB gene to the FDH system does not increase further the production of reduced metabolites because the system for NADH regeneration already reached the maximum theoretical yield of approximately 4 mol NADH/mol of glucose. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1096-7176 1096-7184 |
DOI: | 10.1006/mben.2002.0229 |