Multi-IRS-Aided Doppler-Tolerant Wideband DFRC System
Intelligent reflecting surface (IRS) is recognized as an enabler of future dual-function radar-communications (DFRC) by improving spectral efficiency, coverage, parameter estimation, and interference suppression. Prior studies on IRS-aided DFRC focus either on narrowband processing, single-IRS deplo...
Saved in:
Published in | IEEE transactions on communications Vol. 71; no. 11; p. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Intelligent reflecting surface (IRS) is recognized as an enabler of future dual-function radar-communications (DFRC) by improving spectral efficiency, coverage, parameter estimation, and interference suppression. Prior studies on IRS-aided DFRC focus either on narrowband processing, single-IRS deployment, static targets, non-clutter scenario, or on the under-utilized line-of-sight (LoS) and non-line-of-sight (NLoS) paths. In this paper, we address the aforementioned shortcomings by optimizing a wideband DFRC system comprising multiple IRSs and a dual-function base station that jointly processes the LoS and NLoS wideband multi-carrier signals to improve both the communications SINR and the radar SINR in the presence of a moving target and clutter. We formulate the transmit, receive and IRS beamformer design as the maximization of the worst-case radar signal-to-interference-plus-noise ratio (SINR) subject to transmit power and communications SINR. We tackle this nonconvex problem under the alternating optimization framework, where the subproblems are solved by a combination of Dinkelbach algorithm, consensus alternating direction method of multipliers, and Riemannian steepest decent. Our numerical experiments show that the proposed multi-IRS-aided wideband DFRC provides over 4 dB radar SINR and 31.7% improvement in target detection over a single-IRS system. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/TCOMM.2023.3305466 |