Escape components of McMullen maps

We consider the McMullen maps $f_{\unicode{x3bb} }(z)=z^{n}+\unicode{x3bb} z^{-n}$ with $\unicode{x3bb} \in \mathbb {C}^{*}$ and $n \geq 3$ . We prove that the closures of escape hyperbolic components are pairwise disjoint and the boundaries of all bounded escape components (the McMullen domain and...

Full description

Saved in:
Bibliographic Details
Published inErgodic theory and dynamical systems Vol. 43; no. 11; pp. 3745 - 3775
Main Authors QIU, WEIYUAN, ROESCH, PASCALE, WANG, YUEYANG
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We consider the McMullen maps $f_{\unicode{x3bb} }(z)=z^{n}+\unicode{x3bb} z^{-n}$ with $\unicode{x3bb} \in \mathbb {C}^{*}$ and $n \geq 3$ . We prove that the closures of escape hyperbolic components are pairwise disjoint and the boundaries of all bounded escape components (the McMullen domain and Sierpiński holes) are quasi-circles with Hausdorff dimension strictly between $1$ and $2$ .
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2022.84