Biophysical analysis on molecular interactions between chitosan-coated sinapic acid loaded liposomes and mucin

The mucus biomembrane is a primary barrier in delivering drugs to the brain via intranasal delivery. The negatively charged nanoformulations suffer from poor mucoadhesive ability and less retention time in the nasal cavity, which limits further therapeutic efficacy. The positively charged chitosan c...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1868; no. 1; p. 130517
Main Authors A., Prabakaran, Alexander, Amit
Format Journal Article
LanguageEnglish
Published Netherlands 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The mucus biomembrane is a primary barrier in delivering drugs to the brain via intranasal delivery. The negatively charged nanoformulations suffer from poor mucoadhesive ability and less retention time in the nasal cavity, which limits further therapeutic efficacy. The positively charged chitosan coating on liposomes may overcome the above issues. Hence, understanding the molecular interactions between the chitosan-coated liposomes and mucin is essential for developing an effective drug delivery system. The molecular interactions of mucin with sinapic acid-loaded liposomes (SA-LPs) and mucin with chitosan-coated sinapic acid-loaded liposomes (SA-CH-LPs) were assessed using different biophysical instrumental analyses by interpreting the UV-Vis spectra and observing the particle size, polydispersity index, surface charge, and rheological behavior. The mucin interaction with SA-CH-LPs showed increased viscosity as compared to SA-LPs with mucin. Moreover, the mucin interaction with SA-CH-LPs showed stronger mucoadhesive properties as compared to SA-LPs with mucin. The electrostatic interaction between positively charged SA-CH-LPs and negatively charged mucin was responsible for the enhanced mucoadhesive property. The positively charged SA-CH-LPs highly interact with mucin as compared to negatively charged SA-LPs. The mucoadhesive property of SA-CH-LPs could improve the retention of SA in the nasal cavity as compared to SA-LPs. These findings emphasize the importance of chitosan in modulating the mucoadhesive behavior of liposomes. Overall, this study helps to understand the molecular interactions and mucoadhesive nature of the chitosan-coated liposomes with mucin, which is essential for biological activity in the physiological environment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-4165
1872-8006
1872-8006
DOI:10.1016/j.bbagen.2023.130517