Pituitary dysfunction after blast traumatic brain injury The UK BIOSAP study

Pituitary dysfunction is a recognized consequence of traumatic brain injury (TBI) that causes cognitive, psychological, and metabolic impairment. Hormone replacement offers a therapeutic opportunity. Blast TBI (bTBI) from improvised explosive devices is commonly seen in soldiers returning from recen...

Full description

Saved in:
Bibliographic Details
Published inAnnals of neurology Vol. 74; no. 4; pp. 527 - 536
Main Authors Baxter, David, Sharp, David J., Feeney, Claire, Papadopoulou, Debbie, Ham, Timothy E., Jilka, Sagar, Hellyer, Peter J., Patel, Maneesh C., Bennett, Alexander N., Mistlin, Alan, McGilloway, Emer, Midwinter, Mark, Goldstone, Anthony P.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.10.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pituitary dysfunction is a recognized consequence of traumatic brain injury (TBI) that causes cognitive, psychological, and metabolic impairment. Hormone replacement offers a therapeutic opportunity. Blast TBI (bTBI) from improvised explosive devices is commonly seen in soldiers returning from recent conflicts. We investigated: (1) the prevalence and consequences of pituitary dysfunction following moderate to severe bTBI and (2) whether it is associated with particular patterns of brain injury. Nineteen male soldiers with moderate to severe bTBI (median age = 28.3 years) and 39 male controls with moderate to severe nonblast TBI (nbTBI; median age = 32.3 years) underwent full dynamic endocrine assessment between 2 and 48 months after injury. In addition, soldiers had structural brain magnetic resonance imaging, including diffusion tensor imaging (DTI), and cognitive assessment. Six of 19 (32.0%) soldiers with bTBI, but only 1 of 39 (2.6%) nbTBI controls, had anterior pituitary dysfunction (p = 0.004). Two soldiers had hyperprolactinemia, 2 had growth hormone (GH) deficiency, 1 had adrenocorticotropic hormone (ACTH) deficiency, and 1 had combined GH/ACTH/gonadotrophin deficiency. DTI measures of white matter structure showed greater traumatic axonal injury in the cerebellum and corpus callosum in those soldiers with pituitary dysfunction than in those without. Soldiers with pituitary dysfunction after bTBI also had a higher prevalence of skull/facial fractures and worse cognitive function. Four soldiers (21.1%) commenced hormone replacement(s) for hypopituitarism. We reveal a high prevalence of anterior pituitary dysfunction in soldiers suffering moderate to severe bTBI, which was more frequent than in a matched group of civilian moderate to severe nbTBI subjects. We recommend that all patients with moderate to severe bTBI should routinely have comprehensive assessment of endocrine function.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0364-5134
1531-8249
1531-8249
DOI:10.1002/ana.23958