Low-velocity impact predictions of composite laminates using a continuum shell based modeling approach part A: Impact study
This paper introduces a shell based finite element (FE) model for predicting the impact response and dominant failure mechanisms of fiber reinforced polymer matrix composites subject to low-velocity impact. The model utilizes Enhanced Schapery Theory (EST) for capturing the matrix non-linearity due...
Saved in:
Published in | International journal of solids and structures Vol. 155; pp. 185 - 200 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
15.12.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper introduces a shell based finite element (FE) model for predicting the impact response and dominant failure mechanisms of fiber reinforced polymer matrix composites subject to low-velocity impact. The model utilizes Enhanced Schapery Theory (EST) for capturing the matrix non-linearity due to micro cracking as well as macroscopic intra-lamina failure, that is, matrix cracking and fiber rupture in the 1–2 failure plane of a lamina. Discrete cohesive elements (DCZM) are utilized for capturing the inter-lamina failure initiation and propagation. The intra- and inter-lamina damage and failure models are implemented as user subroutines in the commercial finite element solver, ABAQUS Explicit. The model is compared against low-velocity impact experimental data. High fidelity non-destructive inspection (NDI) methods are used to quantify the impact damage for a detailed comparison to the model predictions. The modeling technique shows excellent agreement with experimental results, both for impact response and damage evolution. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0020-7683 1879-2146 |
DOI: | 10.1016/j.ijsolstr.2018.07.020 |