Indications of neutralising anti-idiotypic antibodies and selective proteolytic fragmentation in polyclonal anti-D IgG preparations

Proteolytic fragmentation is the only suggested cause of potency losses during storage of liquid human polyclonal anti-D Ig. Besides the effect of fragmentation, we have investigated the potential contribution of neutralising anti-idiotypic antibodies (anti-Ids). Potency changes during storage and/o...

Full description

Saved in:
Bibliographic Details
Published inBiologicals Vol. 31; no. 3; pp. 191 - 201
Main Authors Gronski, P, Haas, T, Kanzy, E.J, Lang, W, Röder, J, Ruhwedel, K, Simshäuser, K
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.09.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Proteolytic fragmentation is the only suggested cause of potency losses during storage of liquid human polyclonal anti-D Ig. Besides the effect of fragmentation, we have investigated the potential contribution of neutralising anti-idiotypic antibodies (anti-Ids). Potency changes during storage and/or upon pH reduction in anti-D IgG batches with or without addition of plasminogen and urokinase were quantitatively analysed by the autoanalyser (AA) method or by a special procedure of flow cytometry (FC). Moreover, simultaneous changes of the molecular size distribution pattern have been determined by size exclusion chromatography. In contrast to the AA procedure, the particular FC methodology was found to be almost insensitive to proteolysis comprising up to 30% of total IgG. Data interpretation was based on the assumption that both assays cannot detect Ids with neutralised paratopes. In the absence of detectable neutralisation (functional absence of anti-Ids), it could be demonstrated that the anti-D IgG subpopulation is more sensitive to fragmentation by endogenous protease as compared to the unrelated bulk. However, both methods detected batch- and assay-dependently variable potency losses during storage. Moreover, the increase of potency induced by pH reduction correlated with the increase of monomeric IgG, essentially on the expense of dimers. This finding was interpreted to indirectly indicate the neutralising action of anti-Ids known to be the major driving force of dimer formation in polyclonal IgG. A more or less pronounced pH-dependent potency increase was also detectable in three arbitrarily selected batches of two other manufacturers. The data allows to assume that anti-Id-mediated neutralisation can significantly contribute to losses of anti-D potency. In addition, it turned out that anti-D plasma itself can be the source of anti-Ids.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1045-1056
1095-8320
DOI:10.1016/S1045-1056(03)00057-5