Nano-structured aluminum surfaces for dropwise condensation
Superhydrophobic surfaces represent a promising strategy to consistently promote dropwise condensation, which can lead to an important increase of the heat transfer coefficient as compared to filmwise condensation. To get superhydrophobicity, it is necessary to reduce the surface energy and to modif...
Saved in:
Published in | Surface & coatings technology Vol. 348; pp. 1 - 12 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
25.08.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Superhydrophobic surfaces represent a promising strategy to consistently promote dropwise condensation, which can lead to an important increase of the heat transfer coefficient as compared to filmwise condensation. To get superhydrophobicity, it is necessary to reduce the surface energy and to modify the surface structure by achieving superficial micro-roughness.
In this work, aluminum surfaces were modified via chemical methods to promote dropwise condensation due to superhydrophobic behavior. The metal substrates were etched using three different strategies to impart nanoscale roughness; a fluorosilane film was subsequently deposited over them to decrease the surface energy in two different modes (spin coating and immersion). In the end, four different surfaces were investigated. Experimental tests of pure steam condensation on the resulting substrates showed that dropwise condensation was successfully achieved on the superhydrophobic surfaces, measuring heat transfer coefficients as high as 100 kW m−2 K−1. Although the dropwise condensation moves soon to hybrid and filmwise condensation, the performance during pure dropwise condensation appears to be clearly linked to the different chemical procedures used in the sample preparation.
•Superhydrophobic aluminum surface have been obtained combining chemical etching and fluorosilane coating.•Drop wise condensation was obtained on aluminum demonstrating the possibility to increase the heat transfer coefficient.•Relationship between different chemical treatments and the drop wise condensation have been studied. |
---|---|
ISSN: | 0257-8972 1879-3347 |
DOI: | 10.1016/j.surfcoat.2018.05.018 |