Nonreciprocal Photon Blockade
We propose how to create and manipulate one-way nonclassical light via photon blockade in rotating nonlinear devices. We refer to this effect as nonreciprocal photon blockade (PB). Specifically, we show that in a spinning Kerr resonator, PB happens when the resonator is driven in one direction but n...
Saved in:
Published in | Physical review letters Vol. 121; no. 15; p. 153601 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
12.10.2018
|
Online Access | Get more information |
ISSN | 1079-7114 |
DOI | 10.1103/PhysRevLett.121.153601 |
Cover
Loading…
Abstract | We propose how to create and manipulate one-way nonclassical light via photon blockade in rotating nonlinear devices. We refer to this effect as nonreciprocal photon blockade (PB). Specifically, we show that in a spinning Kerr resonator, PB happens when the resonator is driven in one direction but not the other. This occurs because of the Fizeau drag, leading to a full split of the resonance frequencies of the countercirculating modes. Different types of purely quantum correlations, such as single- and two-photon blockades, can emerge in different directions in a well-controlled manner, and the transition from PB to photon-induced tunneling is revealed as well. Our work opens up a new route to achieve quantum nonreciprocal devices, which are crucial elements in chiral quantum technologies or topological photonics. |
---|---|
AbstractList | We propose how to create and manipulate one-way nonclassical light via photon blockade in rotating nonlinear devices. We refer to this effect as nonreciprocal photon blockade (PB). Specifically, we show that in a spinning Kerr resonator, PB happens when the resonator is driven in one direction but not the other. This occurs because of the Fizeau drag, leading to a full split of the resonance frequencies of the countercirculating modes. Different types of purely quantum correlations, such as single- and two-photon blockades, can emerge in different directions in a well-controlled manner, and the transition from PB to photon-induced tunneling is revealed as well. Our work opens up a new route to achieve quantum nonreciprocal devices, which are crucial elements in chiral quantum technologies or topological photonics. |
Author | Huang, Ran Nori, Franco Miranowicz, Adam Liao, Jie-Qiao Jing, Hui |
Author_xml | – sequence: 1 givenname: Ran surname: Huang fullname: Huang, Ran organization: Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China – sequence: 2 givenname: Adam surname: Miranowicz fullname: Miranowicz, Adam organization: Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland – sequence: 3 givenname: Jie-Qiao surname: Liao fullname: Liao, Jie-Qiao organization: Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China – sequence: 4 givenname: Franco surname: Nori fullname: Nori, Franco organization: Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA – sequence: 5 givenname: Hui surname: Jing fullname: Jing, Hui organization: Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30362805$$D View this record in MEDLINE/PubMed |
BookMark | eNo1zstKw0AUgOFBFHvRR7D0BRLPmTOXzFKLNwhtke7LZOaEVtNMSKLQt3ehrv7dxz8Tl21qWYgFQo4IdL89nId3_i55HHOUmKMmA3ghpgjWZRZRTcRsGD4AAKUprsWEgIwsQE_F3Tq1PYdj16fgm-X2kMbULh-bFD595BtxVftm4Nu_zsXu-Wm3es3Kzcvb6qHMApEbsxqNRqwck9FkKdjaSmmjiiSVdagqNsGQrzwH7UNUzkttagMeogkFy7lY_LLdV3XiuO_648n35_3_pvwBbn5Atg |
CitedBy_id | crossref_primary_10_1016_j_fmre_2022_09_007 crossref_primary_10_1002_andp_202000405 crossref_primary_10_1364_OE_518042 crossref_primary_10_1088_0256_307X_38_2_024202 crossref_primary_10_1088_1674_1056_ad0cca crossref_primary_10_1103_PhysRevLett_121_203602 crossref_primary_10_1002_qute_202300239 crossref_primary_10_1364_OE_528090 crossref_primary_10_1364_OL_468546 crossref_primary_10_1002_qute_202400089 crossref_primary_10_1103_PhysRevA_105_053507 crossref_primary_10_1038_s41598_022_21267_4 crossref_primary_10_1103_PhysRevA_110_012423 crossref_primary_10_1103_PhysRevA_109_043714 crossref_primary_10_1103_PhysRevA_109_043712 crossref_primary_10_1103_PhysRevA_110_043716 crossref_primary_10_1007_s11433_021_1712_2 crossref_primary_10_1016_j_rinp_2022_105987 crossref_primary_10_1103_PhysRevA_107_043715 crossref_primary_10_1103_PhysRevApplied_13_044070 crossref_primary_10_1007_s10773_021_04839_4 crossref_primary_10_1364_OE_532908 crossref_primary_10_1002_lpor_202200574 crossref_primary_10_1103_PhysRevA_108_063704 crossref_primary_10_1002_qute_202300244 crossref_primary_10_1103_PhysRevA_111_023702 crossref_primary_10_1364_OE_464588 crossref_primary_10_1103_PhysRevLett_129_043601 crossref_primary_10_1002_andp_202000196 crossref_primary_10_1007_s10773_019_04229_x crossref_primary_10_1038_s41534_024_00870_5 crossref_primary_10_1088_1367_2630_ad9d6e crossref_primary_10_1103_PhysRevA_105_013503 crossref_primary_10_1103_PhysRevA_108_033515 crossref_primary_10_1103_PhysRevA_111_033512 crossref_primary_10_1103_PhysRevResearch_5_023148 crossref_primary_10_1364_OE_519368 crossref_primary_10_1103_PhysRevLett_132_193602 crossref_primary_10_1364_OL_510053 crossref_primary_10_1103_PhysRevResearch_6_033247 crossref_primary_10_1021_acsomega_0c05673 crossref_primary_10_1038_s41567_020_0975_9 crossref_primary_10_1103_PhysRevA_104_L031503 crossref_primary_10_1364_PRJ_405246 crossref_primary_10_1103_PhysRevA_103_053522 crossref_primary_10_1002_qute_202400654 crossref_primary_10_1038_s41566_023_01261_6 crossref_primary_10_1364_OE_394488 crossref_primary_10_1103_PhysRevA_99_063810 crossref_primary_10_1140_epjd_s10053_022_00384_9 crossref_primary_10_1103_PhysRevA_108_023716 crossref_primary_10_1364_OE_493208 crossref_primary_10_1109_TAP_2019_2925927 crossref_primary_10_1103_PhysRevA_103_043724 crossref_primary_10_1103_PhysRevA_109_013719 crossref_primary_10_1364_OE_486102 crossref_primary_10_1103_PhysRevApplied_22_064001 crossref_primary_10_1103_PhysRevA_100_053809 crossref_primary_10_1103_PhysRevA_105_013711 crossref_primary_10_1088_0256_307X_41_7_074202 crossref_primary_10_1103_PhysRevA_101_013826 crossref_primary_10_1103_PhysRevApplied_17_024009 crossref_primary_10_1103_PhysRevApplied_23_024061 crossref_primary_10_1103_PhysRevA_104_033522 crossref_primary_10_1103_PhysRevA_109_023520 crossref_primary_10_1103_PhysRevA_99_023823 crossref_primary_10_1002_qute_202100121 crossref_primary_10_3389_fphy_2023_1168372 crossref_primary_10_1016_j_rinp_2021_105002 crossref_primary_10_1364_OE_457931 crossref_primary_10_1016_j_physleta_2023_128653 crossref_primary_10_1126_science_aaw6259 crossref_primary_10_35848_1882_0786_abce99 crossref_primary_10_1140_epjqt_s40507_024_00218_0 crossref_primary_10_1126_sciadv_abe8924 crossref_primary_10_1088_1674_1056_ac4cbc crossref_primary_10_1088_1674_1056_ab6836 crossref_primary_10_1103_PhysRevA_107_023314 crossref_primary_10_1103_PhysRevA_110_013515 crossref_primary_10_1002_que2_65 crossref_primary_10_1007_s11433_020_1559_4 crossref_primary_10_1103_PhysRevA_110_043707 crossref_primary_10_1103_PhysRevA_103_053501 crossref_primary_10_1364_OE_440382 crossref_primary_10_1103_PhysRevA_110_043704 crossref_primary_10_1103_PhysRevA_104_063713 crossref_primary_10_1103_PhysRevA_102_043527 crossref_primary_10_1103_PhysRevA_104_022402 crossref_primary_10_1140_epjp_s13360_022_03148_x crossref_primary_10_1007_s11467_022_1202_1 crossref_primary_10_1007_s11082_020_02390_w crossref_primary_10_1364_OL_523210 crossref_primary_10_1103_PhysRevA_105_012201 crossref_primary_10_1364_OE_27_015382 crossref_primary_10_1364_OE_384417 crossref_primary_10_1364_OL_528451 crossref_primary_10_1038_s41598_025_91813_3 crossref_primary_10_1364_OE_534292 crossref_primary_10_1007_s11433_021_1880_7 crossref_primary_10_1002_qute_202400043 crossref_primary_10_1364_OE_391628 crossref_primary_10_3389_fphy_2022_894115 crossref_primary_10_1103_PhysRevA_107_033701 crossref_primary_10_1140_epjp_s13360_022_03552_3 crossref_primary_10_1103_PhysRevA_111_013713 crossref_primary_10_1103_PhysRevA_106_053707 crossref_primary_10_1103_PhysRevA_108_053715 crossref_primary_10_1103_PhysRevApplied_18_024027 crossref_primary_10_1140_epjs_s11734_021_00392_7 crossref_primary_10_1103_PhysRevA_111_013704 crossref_primary_10_1103_PhysRevLett_132_243602 crossref_primary_10_1140_epjd_s10053_024_00921_8 crossref_primary_10_1364_OE_27_025515 crossref_primary_10_1364_OE_379990 crossref_primary_10_1007_s10773_020_04435_y crossref_primary_10_1007_s11128_024_04517_4 crossref_primary_10_1364_OE_520454 crossref_primary_10_1007_s11467_022_1212_z crossref_primary_10_1103_PhysRevA_108_063505 crossref_primary_10_1103_PhysRevA_104_033708 crossref_primary_10_1103_PhysRevA_108_053703 crossref_primary_10_1103_PhysRevA_104_033707 crossref_primary_10_1103_PhysRevA_104_033705 crossref_primary_10_1088_1674_1056_ac523f crossref_primary_10_1364_OE_529035 crossref_primary_10_1007_s11467_023_1352_9 crossref_primary_10_1364_OE_493004 crossref_primary_10_1103_PhysRevLett_123_233604 crossref_primary_10_1364_OE_431211 crossref_primary_10_1021_acsphotonics_2c00375 crossref_primary_10_1364_OE_512280 crossref_primary_10_1103_PhysRevA_104_043521 crossref_primary_10_1063_5_0072140 crossref_primary_10_1109_JLT_2021_3049501 crossref_primary_10_1088_1742_6596_2937_1_012001 crossref_primary_10_1088_1612_202X_ac2959 crossref_primary_10_1002_andp_202000343 crossref_primary_10_1142_S0217732321500371 crossref_primary_10_1360_TB_2022_0118 crossref_primary_10_1088_2399_6528_ac261f crossref_primary_10_1364_OE_507019 crossref_primary_10_1088_0256_307X_40_10_104201 crossref_primary_10_1063_5_0166231 crossref_primary_10_1002_adpr_202000104 crossref_primary_10_1038_s41598_022_09626_7 crossref_primary_10_1364_JOSAB_383905 crossref_primary_10_1360_SSPMA_2023_0092 crossref_primary_10_1103_PhysRevA_105_043711 crossref_primary_10_1364_OE_453493 crossref_primary_10_35848_1882_0786_ac17d3 crossref_primary_10_1103_PhysRevA_100_053832 crossref_primary_10_1088_1674_1056_abc7a4 crossref_primary_10_7566_JPSJ_90_114001 crossref_primary_10_1007_s13538_024_01433_x crossref_primary_10_1103_PhysRevA_110_033702 crossref_primary_10_1103_PhysRevApplied_19_054093 crossref_primary_10_1021_acsphotonics_0c00961 crossref_primary_10_35848_1347_4065_ac92b2 crossref_primary_10_1007_s11433_019_9451_3 crossref_primary_10_1103_PhysRevApplied_10_064037 crossref_primary_10_1364_OE_27_028114 crossref_primary_10_3390_photonics9080585 crossref_primary_10_1142_S0219749923500296 crossref_primary_10_3389_frqst_2024_1438340 crossref_primary_10_1088_1674_1056_ab8abf crossref_primary_10_1103_PhysRevA_110_043505 crossref_primary_10_1364_OE_27_025882 crossref_primary_10_1038_s41377_020_0244_9 crossref_primary_10_1002_qute_202300187 crossref_primary_10_1007_s11128_021_03244_4 crossref_primary_10_1103_PhysRevA_101_023810 crossref_primary_10_1088_1361_6455_ad34a1 crossref_primary_10_1103_PhysRevApplied_18_064008 crossref_primary_10_1103_PhysRevApplied_18_064009 crossref_primary_10_1103_PhysRevA_102_043701 crossref_primary_10_1088_1402_4896_ac3fd0 crossref_primary_10_1103_PhysRevB_100_144301 crossref_primary_10_1209_0295_5075_131_24003 crossref_primary_10_1038_s41467_024_54199_w crossref_primary_10_1103_PhysRevA_110_023718 crossref_primary_10_1364_OE_501689 crossref_primary_10_1103_PhysRevA_108_053512 crossref_primary_10_1103_PhysRevResearch_4_033083 crossref_primary_10_1103_PhysRevA_107_033507 crossref_primary_10_1364_JOSAB_506891 crossref_primary_10_1007_s11433_023_2348_x crossref_primary_10_3390_mi14030655 crossref_primary_10_1016_j_fmre_2025_02_012 crossref_primary_10_1103_PhysRevLett_128_203602 crossref_primary_10_1088_1572_9494_ad75f3 crossref_primary_10_1364_OE_495476 crossref_primary_10_1063_5_0190162 crossref_primary_10_3389_fphy_2023_1332496 crossref_primary_10_1103_PhysRevA_100_043810 crossref_primary_10_1088_0256_307X_41_4_044205 crossref_primary_10_1364_OE_493612 crossref_primary_10_1007_s10773_022_05024_x crossref_primary_10_1103_PhysRevA_101_023805 crossref_primary_10_1103_PhysRevA_106_043715 crossref_primary_10_1103_PhysRevA_110_023722 crossref_primary_10_1103_PhysRevA_107_023703 crossref_primary_10_3390_mi12091074 crossref_primary_10_1103_PhysRevA_110_023723 crossref_primary_10_1103_PhysRevA_100_053857 crossref_primary_10_1103_PhysRevA_110_023725 crossref_primary_10_1103_PhysRevApplied_21_034061 crossref_primary_10_1016_j_fmre_2024_12_018 crossref_primary_10_1088_1674_1056_ac6499 crossref_primary_10_1103_PhysRevA_100_043831 crossref_primary_10_1002_qute_202400374 crossref_primary_10_1021_acs_nanolett_0c01562 crossref_primary_10_1103_PhysRevB_104_224434 crossref_primary_10_1016_j_fmre_2022_12_017 crossref_primary_10_7498_aps_68_20190205 crossref_primary_10_1103_PhysRevB_106_115435 crossref_primary_10_1088_1402_4896_ad28a5 crossref_primary_10_1088_1674_1056_ac3ecc crossref_primary_10_1016_j_physe_2020_114412 crossref_primary_10_1103_PhysRevA_111_013517 crossref_primary_10_1364_OE_513536 crossref_primary_10_1364_PRJ_421234 crossref_primary_10_1103_PhysRevA_102_043705 crossref_primary_10_1103_PhysRevA_108_043702 crossref_primary_10_1364_OE_487297 crossref_primary_10_1016_j_rinp_2022_106202 crossref_primary_10_1063_5_0208107 crossref_primary_10_1103_PhysRevResearch_3_043020 crossref_primary_10_1364_OE_438227 crossref_primary_10_1140_epjp_s13360_023_04828_y crossref_primary_10_1364_OE_488247 crossref_primary_10_1038_s41467_020_19909_0 crossref_primary_10_1002_lpor_202100430 crossref_primary_10_1103_PhysRevA_101_053802 crossref_primary_10_1103_PhysRevLett_133_043601 crossref_primary_10_2139_ssrn_4181183 crossref_primary_10_1016_j_aej_2023_06_065 crossref_primary_10_7498_aps_73_20240347 crossref_primary_10_1364_OE_450585 crossref_primary_10_1002_qute_202400224 crossref_primary_10_1016_j_fmre_2022_07_012 crossref_primary_10_1016_j_aej_2021_02_041 crossref_primary_10_1103_PhysRevA_106_062439 crossref_primary_10_1007_s11433_022_1943_4 crossref_primary_10_1103_PhysRevA_105_043517 crossref_primary_10_1103_PhysRevA_107_063701 crossref_primary_10_1103_PhysRevLett_130_013601 crossref_primary_10_1007_s11433_021_1831_y crossref_primary_10_1002_qute_202300422 crossref_primary_10_1103_PhysRevA_104_053518 crossref_primary_10_1088_1674_1056_ad3dd6 crossref_primary_10_1364_OE_443486 crossref_primary_10_1088_1674_1056_ac2d19 crossref_primary_10_1016_j_fmre_2022_07_009 crossref_primary_10_1038_s41377_021_00464_2 crossref_primary_10_1140_epjqt_s40507_024_00301_6 crossref_primary_10_1002_andp_202200157 crossref_primary_10_1103_PhysRevA_109_043103 crossref_primary_10_1103_PhysRevLett_134_013602 crossref_primary_10_1103_PhysRevB_104_035304 crossref_primary_10_1088_0256_307X_39_12_124201 crossref_primary_10_1103_PhysRevA_108_043723 crossref_primary_10_1364_OE_524680 crossref_primary_10_1088_0256_307X_39_12_124202 crossref_primary_10_1016_j_optcom_2023_129796 crossref_primary_10_1364_OE_450337 crossref_primary_10_1364_OL_544015 crossref_primary_10_1103_PhysRevA_109_033701 crossref_primary_10_1364_OL_512264 crossref_primary_10_1002_qute_202400681 crossref_primary_10_1063_5_0063247 crossref_primary_10_1103_PhysRevA_100_033814 crossref_primary_10_1103_PhysRevA_109_033709 crossref_primary_10_1002_andp_202300465 crossref_primary_10_1088_1361_648X_ad81a5 crossref_primary_10_1103_PhysRevA_107_053710 crossref_primary_10_1103_PhysRevLett_128_213605 crossref_primary_10_1103_PhysRevA_102_053710 crossref_primary_10_1103_PhysRevApplied_17_054004 crossref_primary_10_1364_OL_440608 crossref_primary_10_1002_andp_202100297 crossref_primary_10_1088_1674_1056_ac615a crossref_primary_10_1103_PhysRevA_110_023520 crossref_primary_10_1038_s41598_022_21348_4 crossref_primary_10_1140_epjqt_s40507_021_00096_w crossref_primary_10_3390_photonics9100727 crossref_primary_10_1364_OE_492209 crossref_primary_10_3390_photonics9100728 crossref_primary_10_1007_s11433_023_2340_7 crossref_primary_10_1364_OE_530539 crossref_primary_10_1103_PhysRevA_105_013705 crossref_primary_10_1063_5_0197437 crossref_primary_10_1002_lpor_201900252 crossref_primary_10_1002_qute_202400217 crossref_primary_10_1103_PhysRevApplied_13_054078 crossref_primary_10_35848_1882_0786_ac1232 crossref_primary_10_1007_s11433_022_2054_0 crossref_primary_10_1103_PhysRevA_110_063510 crossref_primary_10_1364_OE_529796 crossref_primary_10_1103_PhysRevApplied_22_064072 crossref_primary_10_1364_OE_27_027649 crossref_primary_10_1088_1402_4896_ada46f crossref_primary_10_1364_OE_460158 crossref_primary_10_1140_epjp_s13360_022_03172_x crossref_primary_10_1364_OE_545207 crossref_primary_10_1007_s11128_022_03724_1 crossref_primary_10_1063_5_0166869 crossref_primary_10_1007_s10946_023_10119_9 crossref_primary_10_1103_PhysRevLett_128_083604 crossref_primary_10_1103_PhysRevB_103_094105 crossref_primary_10_1103_PhysRevA_110_053702 crossref_primary_10_1103_PhysRevA_102_033526 crossref_primary_10_1364_PRJ_8_000143 crossref_primary_10_1103_PhysRevA_107_052601 crossref_primary_10_1364_OE_510933 crossref_primary_10_1103_PhysRevLett_125_123901 crossref_primary_10_1103_PhysRevA_99_043833 crossref_primary_10_1364_OE_492302 crossref_primary_10_1364_OE_499738 crossref_primary_10_1002_que2_39 crossref_primary_10_1038_s41598_024_64206_1 crossref_primary_10_1103_PhysRevLett_125_143605 crossref_primary_10_1364_OE_545314 crossref_primary_10_1140_epjp_s13360_024_05263_3 crossref_primary_10_1038_s41467_023_43708_y crossref_primary_10_1103_PhysRevA_105_063702 crossref_primary_10_1103_PhysRevA_110_023507 crossref_primary_10_1103_PhysRevA_99_043837 crossref_primary_10_1016_j_chaos_2023_114137 crossref_primary_10_1007_s11433_023_2301_2 crossref_primary_10_1088_1402_4896_ad6b56 crossref_primary_10_1364_OE_480554 crossref_primary_10_1364_OL_451050 crossref_primary_10_1063_5_0152354 crossref_primary_10_1364_OE_550347 crossref_primary_10_1063_5_0158334 crossref_primary_10_1103_PhysRevA_104_053718 crossref_primary_10_1364_OE_462107 crossref_primary_10_1016_j_chaos_2024_115880 crossref_primary_10_1142_S0219749923500211 crossref_primary_10_4236_jmp_2024_154023 crossref_primary_10_3390_photonics11040389 crossref_primary_10_1140_epjd_s10053_024_00937_0 crossref_primary_10_1063_5_0035498 crossref_primary_10_1364_PRJ_7_000630 crossref_primary_10_1103_PhysRevA_106_043722 crossref_primary_10_1103_PhysRevA_109_043702 crossref_primary_10_1364_OE_488167 crossref_primary_10_1364_OE_507086 crossref_primary_10_1364_OL_398247 crossref_primary_10_1364_PRJ_412904 crossref_primary_10_1103_PhysRevA_100_023814 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1103/PhysRevLett.121.153601 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1079-7114 |
ExternalDocumentID | 30362805 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 123 2-P 29O 3MX 5VS 85S ACBEA ACGFO ACNCT AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CS3 D0L DU5 EBS EJD ER. F5P MVM N9A NPBMV NPM OK1 P2P ROL S7W SJN TN5 UBE UCJ VQA WH7 XSW YNT ZPR ~02 |
ID | FETCH-LOGICAL-c339t-f16511b9e365373c7f7227d4d3247914be6c63abaec5acd49a256f60a0d6c8e2 |
IngestDate | Thu Jan 02 23:09:25 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c339t-f16511b9e365373c7f7227d4d3247914be6c63abaec5acd49a256f60a0d6c8e2 |
PMID | 30362805 |
ParticipantIDs | pubmed_primary_30362805 |
PublicationCentury | 2000 |
PublicationDate | 2018-10-12 |
PublicationDateYYYYMMDD | 2018-10-12 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review letters |
PublicationTitleAlternate | Phys Rev Lett |
PublicationYear | 2018 |
SSID | ssj0001268 |
Score | 2.673667 |
Snippet | We propose how to create and manipulate one-way nonclassical light via photon blockade in rotating nonlinear devices. We refer to this effect as nonreciprocal... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 153601 |
Title | Nonreciprocal Photon Blockade |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30362805 |
Volume | 121 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5OUfYi3q-TPvja2TZt2j5OUYawMceEvY3cikW3DjYU_PWeJO26m3h5CSGhIcmXnnNyku8EoWvQQOp4jds-dbAN-w1pRwmGhEQBlw5YIFKxkVtt0nz2H_tBv3xtVLNLpqzOP9fySv6DKpQBrool-wdkZ41CAeQBX0gBYUh_hXE7G6ngFEoJwUx3XjIVI-MW1NMrFQtXfDoFGjlT5U2TeCYlprnXuFuulVYKWiz7SLn2MDcEHc7u7qTUHNek0n6C_MyfnBnWun6rI5t3J7g6tmt-kVkaEeiEsR26hto5k5GGxlwshmBO5IHIJMYfsSqNHRUVQg2xK98VPUnFsqivfgCzOh5qjLRCjTQR-4fapSjZRVUFVWC_oB5AVV6bauFrI1HODocu3azvUBXtFI0sbTG0qdHbQ7v5HsFqGMD30YYcHaBtg-HkENUWYLcM7FYB-xHqPdz37pp2_sqFzTGOp3biEjB6WSwxCXCIeZiEnhcKX4CpG8auzyThBFNGJQ8oF35MwUpNiEMdQXgkvWO0OcpG8hRZLBLcIQxjCVZlQFisYh9KT8TSpRFzxRk6McMajE0kk0Ex4PNvay5QtVwll2grgV9H1sAOm7IrPclf63Mu2g |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonreciprocal+Photon+Blockade&rft.jtitle=Physical+review+letters&rft.au=Huang%2C+Ran&rft.au=Miranowicz%2C+Adam&rft.au=Liao%2C+Jie-Qiao&rft.au=Nori%2C+Franco&rft.date=2018-10-12&rft.eissn=1079-7114&rft.volume=121&rft.issue=15&rft.spage=153601&rft_id=info:doi/10.1103%2FPhysRevLett.121.153601&rft_id=info%3Apmid%2F30362805&rft_id=info%3Apmid%2F30362805&rft.externalDocID=30362805 |