Nonreciprocal Photon Blockade

We propose how to create and manipulate one-way nonclassical light via photon blockade in rotating nonlinear devices. We refer to this effect as nonreciprocal photon blockade (PB). Specifically, we show that in a spinning Kerr resonator, PB happens when the resonator is driven in one direction but n...

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 121; no. 15; p. 153601
Main Authors Huang, Ran, Miranowicz, Adam, Liao, Jie-Qiao, Nori, Franco, Jing, Hui
Format Journal Article
LanguageEnglish
Published United States 12.10.2018
Online AccessGet more information
ISSN1079-7114
DOI10.1103/PhysRevLett.121.153601

Cover

Loading…
Abstract We propose how to create and manipulate one-way nonclassical light via photon blockade in rotating nonlinear devices. We refer to this effect as nonreciprocal photon blockade (PB). Specifically, we show that in a spinning Kerr resonator, PB happens when the resonator is driven in one direction but not the other. This occurs because of the Fizeau drag, leading to a full split of the resonance frequencies of the countercirculating modes. Different types of purely quantum correlations, such as single- and two-photon blockades, can emerge in different directions in a well-controlled manner, and the transition from PB to photon-induced tunneling is revealed as well. Our work opens up a new route to achieve quantum nonreciprocal devices, which are crucial elements in chiral quantum technologies or topological photonics.
AbstractList We propose how to create and manipulate one-way nonclassical light via photon blockade in rotating nonlinear devices. We refer to this effect as nonreciprocal photon blockade (PB). Specifically, we show that in a spinning Kerr resonator, PB happens when the resonator is driven in one direction but not the other. This occurs because of the Fizeau drag, leading to a full split of the resonance frequencies of the countercirculating modes. Different types of purely quantum correlations, such as single- and two-photon blockades, can emerge in different directions in a well-controlled manner, and the transition from PB to photon-induced tunneling is revealed as well. Our work opens up a new route to achieve quantum nonreciprocal devices, which are crucial elements in chiral quantum technologies or topological photonics.
Author Huang, Ran
Nori, Franco
Miranowicz, Adam
Liao, Jie-Qiao
Jing, Hui
Author_xml – sequence: 1
  givenname: Ran
  surname: Huang
  fullname: Huang, Ran
  organization: Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
– sequence: 2
  givenname: Adam
  surname: Miranowicz
  fullname: Miranowicz, Adam
  organization: Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
– sequence: 3
  givenname: Jie-Qiao
  surname: Liao
  fullname: Liao, Jie-Qiao
  organization: Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
– sequence: 4
  givenname: Franco
  surname: Nori
  fullname: Nori, Franco
  organization: Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
– sequence: 5
  givenname: Hui
  surname: Jing
  fullname: Jing, Hui
  organization: Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30362805$$D View this record in MEDLINE/PubMed
BookMark eNo1zstKw0AUgOFBFHvRR7D0BRLPmTOXzFKLNwhtke7LZOaEVtNMSKLQt3ehrv7dxz8Tl21qWYgFQo4IdL89nId3_i55HHOUmKMmA3ghpgjWZRZRTcRsGD4AAKUprsWEgIwsQE_F3Tq1PYdj16fgm-X2kMbULh-bFD595BtxVftm4Nu_zsXu-Wm3es3Kzcvb6qHMApEbsxqNRqwck9FkKdjaSmmjiiSVdagqNsGQrzwH7UNUzkttagMeogkFy7lY_LLdV3XiuO_648n35_3_pvwBbn5Atg
CitedBy_id crossref_primary_10_1016_j_fmre_2022_09_007
crossref_primary_10_1002_andp_202000405
crossref_primary_10_1364_OE_518042
crossref_primary_10_1088_0256_307X_38_2_024202
crossref_primary_10_1088_1674_1056_ad0cca
crossref_primary_10_1103_PhysRevLett_121_203602
crossref_primary_10_1002_qute_202300239
crossref_primary_10_1364_OE_528090
crossref_primary_10_1364_OL_468546
crossref_primary_10_1002_qute_202400089
crossref_primary_10_1103_PhysRevA_105_053507
crossref_primary_10_1038_s41598_022_21267_4
crossref_primary_10_1103_PhysRevA_110_012423
crossref_primary_10_1103_PhysRevA_109_043714
crossref_primary_10_1103_PhysRevA_109_043712
crossref_primary_10_1103_PhysRevA_110_043716
crossref_primary_10_1007_s11433_021_1712_2
crossref_primary_10_1016_j_rinp_2022_105987
crossref_primary_10_1103_PhysRevA_107_043715
crossref_primary_10_1103_PhysRevApplied_13_044070
crossref_primary_10_1007_s10773_021_04839_4
crossref_primary_10_1364_OE_532908
crossref_primary_10_1002_lpor_202200574
crossref_primary_10_1103_PhysRevA_108_063704
crossref_primary_10_1002_qute_202300244
crossref_primary_10_1103_PhysRevA_111_023702
crossref_primary_10_1364_OE_464588
crossref_primary_10_1103_PhysRevLett_129_043601
crossref_primary_10_1002_andp_202000196
crossref_primary_10_1007_s10773_019_04229_x
crossref_primary_10_1038_s41534_024_00870_5
crossref_primary_10_1088_1367_2630_ad9d6e
crossref_primary_10_1103_PhysRevA_105_013503
crossref_primary_10_1103_PhysRevA_108_033515
crossref_primary_10_1103_PhysRevA_111_033512
crossref_primary_10_1103_PhysRevResearch_5_023148
crossref_primary_10_1364_OE_519368
crossref_primary_10_1103_PhysRevLett_132_193602
crossref_primary_10_1364_OL_510053
crossref_primary_10_1103_PhysRevResearch_6_033247
crossref_primary_10_1021_acsomega_0c05673
crossref_primary_10_1038_s41567_020_0975_9
crossref_primary_10_1103_PhysRevA_104_L031503
crossref_primary_10_1364_PRJ_405246
crossref_primary_10_1103_PhysRevA_103_053522
crossref_primary_10_1002_qute_202400654
crossref_primary_10_1038_s41566_023_01261_6
crossref_primary_10_1364_OE_394488
crossref_primary_10_1103_PhysRevA_99_063810
crossref_primary_10_1140_epjd_s10053_022_00384_9
crossref_primary_10_1103_PhysRevA_108_023716
crossref_primary_10_1364_OE_493208
crossref_primary_10_1109_TAP_2019_2925927
crossref_primary_10_1103_PhysRevA_103_043724
crossref_primary_10_1103_PhysRevA_109_013719
crossref_primary_10_1364_OE_486102
crossref_primary_10_1103_PhysRevApplied_22_064001
crossref_primary_10_1103_PhysRevA_100_053809
crossref_primary_10_1103_PhysRevA_105_013711
crossref_primary_10_1088_0256_307X_41_7_074202
crossref_primary_10_1103_PhysRevA_101_013826
crossref_primary_10_1103_PhysRevApplied_17_024009
crossref_primary_10_1103_PhysRevApplied_23_024061
crossref_primary_10_1103_PhysRevA_104_033522
crossref_primary_10_1103_PhysRevA_109_023520
crossref_primary_10_1103_PhysRevA_99_023823
crossref_primary_10_1002_qute_202100121
crossref_primary_10_3389_fphy_2023_1168372
crossref_primary_10_1016_j_rinp_2021_105002
crossref_primary_10_1364_OE_457931
crossref_primary_10_1016_j_physleta_2023_128653
crossref_primary_10_1126_science_aaw6259
crossref_primary_10_35848_1882_0786_abce99
crossref_primary_10_1140_epjqt_s40507_024_00218_0
crossref_primary_10_1126_sciadv_abe8924
crossref_primary_10_1088_1674_1056_ac4cbc
crossref_primary_10_1088_1674_1056_ab6836
crossref_primary_10_1103_PhysRevA_107_023314
crossref_primary_10_1103_PhysRevA_110_013515
crossref_primary_10_1002_que2_65
crossref_primary_10_1007_s11433_020_1559_4
crossref_primary_10_1103_PhysRevA_110_043707
crossref_primary_10_1103_PhysRevA_103_053501
crossref_primary_10_1364_OE_440382
crossref_primary_10_1103_PhysRevA_110_043704
crossref_primary_10_1103_PhysRevA_104_063713
crossref_primary_10_1103_PhysRevA_102_043527
crossref_primary_10_1103_PhysRevA_104_022402
crossref_primary_10_1140_epjp_s13360_022_03148_x
crossref_primary_10_1007_s11467_022_1202_1
crossref_primary_10_1007_s11082_020_02390_w
crossref_primary_10_1364_OL_523210
crossref_primary_10_1103_PhysRevA_105_012201
crossref_primary_10_1364_OE_27_015382
crossref_primary_10_1364_OE_384417
crossref_primary_10_1364_OL_528451
crossref_primary_10_1038_s41598_025_91813_3
crossref_primary_10_1364_OE_534292
crossref_primary_10_1007_s11433_021_1880_7
crossref_primary_10_1002_qute_202400043
crossref_primary_10_1364_OE_391628
crossref_primary_10_3389_fphy_2022_894115
crossref_primary_10_1103_PhysRevA_107_033701
crossref_primary_10_1140_epjp_s13360_022_03552_3
crossref_primary_10_1103_PhysRevA_111_013713
crossref_primary_10_1103_PhysRevA_106_053707
crossref_primary_10_1103_PhysRevA_108_053715
crossref_primary_10_1103_PhysRevApplied_18_024027
crossref_primary_10_1140_epjs_s11734_021_00392_7
crossref_primary_10_1103_PhysRevA_111_013704
crossref_primary_10_1103_PhysRevLett_132_243602
crossref_primary_10_1140_epjd_s10053_024_00921_8
crossref_primary_10_1364_OE_27_025515
crossref_primary_10_1364_OE_379990
crossref_primary_10_1007_s10773_020_04435_y
crossref_primary_10_1007_s11128_024_04517_4
crossref_primary_10_1364_OE_520454
crossref_primary_10_1007_s11467_022_1212_z
crossref_primary_10_1103_PhysRevA_108_063505
crossref_primary_10_1103_PhysRevA_104_033708
crossref_primary_10_1103_PhysRevA_108_053703
crossref_primary_10_1103_PhysRevA_104_033707
crossref_primary_10_1103_PhysRevA_104_033705
crossref_primary_10_1088_1674_1056_ac523f
crossref_primary_10_1364_OE_529035
crossref_primary_10_1007_s11467_023_1352_9
crossref_primary_10_1364_OE_493004
crossref_primary_10_1103_PhysRevLett_123_233604
crossref_primary_10_1364_OE_431211
crossref_primary_10_1021_acsphotonics_2c00375
crossref_primary_10_1364_OE_512280
crossref_primary_10_1103_PhysRevA_104_043521
crossref_primary_10_1063_5_0072140
crossref_primary_10_1109_JLT_2021_3049501
crossref_primary_10_1088_1742_6596_2937_1_012001
crossref_primary_10_1088_1612_202X_ac2959
crossref_primary_10_1002_andp_202000343
crossref_primary_10_1142_S0217732321500371
crossref_primary_10_1360_TB_2022_0118
crossref_primary_10_1088_2399_6528_ac261f
crossref_primary_10_1364_OE_507019
crossref_primary_10_1088_0256_307X_40_10_104201
crossref_primary_10_1063_5_0166231
crossref_primary_10_1002_adpr_202000104
crossref_primary_10_1038_s41598_022_09626_7
crossref_primary_10_1364_JOSAB_383905
crossref_primary_10_1360_SSPMA_2023_0092
crossref_primary_10_1103_PhysRevA_105_043711
crossref_primary_10_1364_OE_453493
crossref_primary_10_35848_1882_0786_ac17d3
crossref_primary_10_1103_PhysRevA_100_053832
crossref_primary_10_1088_1674_1056_abc7a4
crossref_primary_10_7566_JPSJ_90_114001
crossref_primary_10_1007_s13538_024_01433_x
crossref_primary_10_1103_PhysRevA_110_033702
crossref_primary_10_1103_PhysRevApplied_19_054093
crossref_primary_10_1021_acsphotonics_0c00961
crossref_primary_10_35848_1347_4065_ac92b2
crossref_primary_10_1007_s11433_019_9451_3
crossref_primary_10_1103_PhysRevApplied_10_064037
crossref_primary_10_1364_OE_27_028114
crossref_primary_10_3390_photonics9080585
crossref_primary_10_1142_S0219749923500296
crossref_primary_10_3389_frqst_2024_1438340
crossref_primary_10_1088_1674_1056_ab8abf
crossref_primary_10_1103_PhysRevA_110_043505
crossref_primary_10_1364_OE_27_025882
crossref_primary_10_1038_s41377_020_0244_9
crossref_primary_10_1002_qute_202300187
crossref_primary_10_1007_s11128_021_03244_4
crossref_primary_10_1103_PhysRevA_101_023810
crossref_primary_10_1088_1361_6455_ad34a1
crossref_primary_10_1103_PhysRevApplied_18_064008
crossref_primary_10_1103_PhysRevApplied_18_064009
crossref_primary_10_1103_PhysRevA_102_043701
crossref_primary_10_1088_1402_4896_ac3fd0
crossref_primary_10_1103_PhysRevB_100_144301
crossref_primary_10_1209_0295_5075_131_24003
crossref_primary_10_1038_s41467_024_54199_w
crossref_primary_10_1103_PhysRevA_110_023718
crossref_primary_10_1364_OE_501689
crossref_primary_10_1103_PhysRevA_108_053512
crossref_primary_10_1103_PhysRevResearch_4_033083
crossref_primary_10_1103_PhysRevA_107_033507
crossref_primary_10_1364_JOSAB_506891
crossref_primary_10_1007_s11433_023_2348_x
crossref_primary_10_3390_mi14030655
crossref_primary_10_1016_j_fmre_2025_02_012
crossref_primary_10_1103_PhysRevLett_128_203602
crossref_primary_10_1088_1572_9494_ad75f3
crossref_primary_10_1364_OE_495476
crossref_primary_10_1063_5_0190162
crossref_primary_10_3389_fphy_2023_1332496
crossref_primary_10_1103_PhysRevA_100_043810
crossref_primary_10_1088_0256_307X_41_4_044205
crossref_primary_10_1364_OE_493612
crossref_primary_10_1007_s10773_022_05024_x
crossref_primary_10_1103_PhysRevA_101_023805
crossref_primary_10_1103_PhysRevA_106_043715
crossref_primary_10_1103_PhysRevA_110_023722
crossref_primary_10_1103_PhysRevA_107_023703
crossref_primary_10_3390_mi12091074
crossref_primary_10_1103_PhysRevA_110_023723
crossref_primary_10_1103_PhysRevA_100_053857
crossref_primary_10_1103_PhysRevA_110_023725
crossref_primary_10_1103_PhysRevApplied_21_034061
crossref_primary_10_1016_j_fmre_2024_12_018
crossref_primary_10_1088_1674_1056_ac6499
crossref_primary_10_1103_PhysRevA_100_043831
crossref_primary_10_1002_qute_202400374
crossref_primary_10_1021_acs_nanolett_0c01562
crossref_primary_10_1103_PhysRevB_104_224434
crossref_primary_10_1016_j_fmre_2022_12_017
crossref_primary_10_7498_aps_68_20190205
crossref_primary_10_1103_PhysRevB_106_115435
crossref_primary_10_1088_1402_4896_ad28a5
crossref_primary_10_1088_1674_1056_ac3ecc
crossref_primary_10_1016_j_physe_2020_114412
crossref_primary_10_1103_PhysRevA_111_013517
crossref_primary_10_1364_OE_513536
crossref_primary_10_1364_PRJ_421234
crossref_primary_10_1103_PhysRevA_102_043705
crossref_primary_10_1103_PhysRevA_108_043702
crossref_primary_10_1364_OE_487297
crossref_primary_10_1016_j_rinp_2022_106202
crossref_primary_10_1063_5_0208107
crossref_primary_10_1103_PhysRevResearch_3_043020
crossref_primary_10_1364_OE_438227
crossref_primary_10_1140_epjp_s13360_023_04828_y
crossref_primary_10_1364_OE_488247
crossref_primary_10_1038_s41467_020_19909_0
crossref_primary_10_1002_lpor_202100430
crossref_primary_10_1103_PhysRevA_101_053802
crossref_primary_10_1103_PhysRevLett_133_043601
crossref_primary_10_2139_ssrn_4181183
crossref_primary_10_1016_j_aej_2023_06_065
crossref_primary_10_7498_aps_73_20240347
crossref_primary_10_1364_OE_450585
crossref_primary_10_1002_qute_202400224
crossref_primary_10_1016_j_fmre_2022_07_012
crossref_primary_10_1016_j_aej_2021_02_041
crossref_primary_10_1103_PhysRevA_106_062439
crossref_primary_10_1007_s11433_022_1943_4
crossref_primary_10_1103_PhysRevA_105_043517
crossref_primary_10_1103_PhysRevA_107_063701
crossref_primary_10_1103_PhysRevLett_130_013601
crossref_primary_10_1007_s11433_021_1831_y
crossref_primary_10_1002_qute_202300422
crossref_primary_10_1103_PhysRevA_104_053518
crossref_primary_10_1088_1674_1056_ad3dd6
crossref_primary_10_1364_OE_443486
crossref_primary_10_1088_1674_1056_ac2d19
crossref_primary_10_1016_j_fmre_2022_07_009
crossref_primary_10_1038_s41377_021_00464_2
crossref_primary_10_1140_epjqt_s40507_024_00301_6
crossref_primary_10_1002_andp_202200157
crossref_primary_10_1103_PhysRevA_109_043103
crossref_primary_10_1103_PhysRevLett_134_013602
crossref_primary_10_1103_PhysRevB_104_035304
crossref_primary_10_1088_0256_307X_39_12_124201
crossref_primary_10_1103_PhysRevA_108_043723
crossref_primary_10_1364_OE_524680
crossref_primary_10_1088_0256_307X_39_12_124202
crossref_primary_10_1016_j_optcom_2023_129796
crossref_primary_10_1364_OE_450337
crossref_primary_10_1364_OL_544015
crossref_primary_10_1103_PhysRevA_109_033701
crossref_primary_10_1364_OL_512264
crossref_primary_10_1002_qute_202400681
crossref_primary_10_1063_5_0063247
crossref_primary_10_1103_PhysRevA_100_033814
crossref_primary_10_1103_PhysRevA_109_033709
crossref_primary_10_1002_andp_202300465
crossref_primary_10_1088_1361_648X_ad81a5
crossref_primary_10_1103_PhysRevA_107_053710
crossref_primary_10_1103_PhysRevLett_128_213605
crossref_primary_10_1103_PhysRevA_102_053710
crossref_primary_10_1103_PhysRevApplied_17_054004
crossref_primary_10_1364_OL_440608
crossref_primary_10_1002_andp_202100297
crossref_primary_10_1088_1674_1056_ac615a
crossref_primary_10_1103_PhysRevA_110_023520
crossref_primary_10_1038_s41598_022_21348_4
crossref_primary_10_1140_epjqt_s40507_021_00096_w
crossref_primary_10_3390_photonics9100727
crossref_primary_10_1364_OE_492209
crossref_primary_10_3390_photonics9100728
crossref_primary_10_1007_s11433_023_2340_7
crossref_primary_10_1364_OE_530539
crossref_primary_10_1103_PhysRevA_105_013705
crossref_primary_10_1063_5_0197437
crossref_primary_10_1002_lpor_201900252
crossref_primary_10_1002_qute_202400217
crossref_primary_10_1103_PhysRevApplied_13_054078
crossref_primary_10_35848_1882_0786_ac1232
crossref_primary_10_1007_s11433_022_2054_0
crossref_primary_10_1103_PhysRevA_110_063510
crossref_primary_10_1364_OE_529796
crossref_primary_10_1103_PhysRevApplied_22_064072
crossref_primary_10_1364_OE_27_027649
crossref_primary_10_1088_1402_4896_ada46f
crossref_primary_10_1364_OE_460158
crossref_primary_10_1140_epjp_s13360_022_03172_x
crossref_primary_10_1364_OE_545207
crossref_primary_10_1007_s11128_022_03724_1
crossref_primary_10_1063_5_0166869
crossref_primary_10_1007_s10946_023_10119_9
crossref_primary_10_1103_PhysRevLett_128_083604
crossref_primary_10_1103_PhysRevB_103_094105
crossref_primary_10_1103_PhysRevA_110_053702
crossref_primary_10_1103_PhysRevA_102_033526
crossref_primary_10_1364_PRJ_8_000143
crossref_primary_10_1103_PhysRevA_107_052601
crossref_primary_10_1364_OE_510933
crossref_primary_10_1103_PhysRevLett_125_123901
crossref_primary_10_1103_PhysRevA_99_043833
crossref_primary_10_1364_OE_492302
crossref_primary_10_1364_OE_499738
crossref_primary_10_1002_que2_39
crossref_primary_10_1038_s41598_024_64206_1
crossref_primary_10_1103_PhysRevLett_125_143605
crossref_primary_10_1364_OE_545314
crossref_primary_10_1140_epjp_s13360_024_05263_3
crossref_primary_10_1038_s41467_023_43708_y
crossref_primary_10_1103_PhysRevA_105_063702
crossref_primary_10_1103_PhysRevA_110_023507
crossref_primary_10_1103_PhysRevA_99_043837
crossref_primary_10_1016_j_chaos_2023_114137
crossref_primary_10_1007_s11433_023_2301_2
crossref_primary_10_1088_1402_4896_ad6b56
crossref_primary_10_1364_OE_480554
crossref_primary_10_1364_OL_451050
crossref_primary_10_1063_5_0152354
crossref_primary_10_1364_OE_550347
crossref_primary_10_1063_5_0158334
crossref_primary_10_1103_PhysRevA_104_053718
crossref_primary_10_1364_OE_462107
crossref_primary_10_1016_j_chaos_2024_115880
crossref_primary_10_1142_S0219749923500211
crossref_primary_10_4236_jmp_2024_154023
crossref_primary_10_3390_photonics11040389
crossref_primary_10_1140_epjd_s10053_024_00937_0
crossref_primary_10_1063_5_0035498
crossref_primary_10_1364_PRJ_7_000630
crossref_primary_10_1103_PhysRevA_106_043722
crossref_primary_10_1103_PhysRevA_109_043702
crossref_primary_10_1364_OE_488167
crossref_primary_10_1364_OE_507086
crossref_primary_10_1364_OL_398247
crossref_primary_10_1364_PRJ_412904
crossref_primary_10_1103_PhysRevA_100_023814
ContentType Journal Article
DBID NPM
DOI 10.1103/PhysRevLett.121.153601
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 30362805
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
ER.
F5P
MVM
N9A
NPBMV
NPM
OK1
P2P
ROL
S7W
SJN
TN5
UBE
UCJ
VQA
WH7
XSW
YNT
ZPR
~02
ID FETCH-LOGICAL-c339t-f16511b9e365373c7f7227d4d3247914be6c63abaec5acd49a256f60a0d6c8e2
IngestDate Thu Jan 02 23:09:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-f16511b9e365373c7f7227d4d3247914be6c63abaec5acd49a256f60a0d6c8e2
PMID 30362805
ParticipantIDs pubmed_primary_30362805
PublicationCentury 2000
PublicationDate 2018-10-12
PublicationDateYYYYMMDD 2018-10-12
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2018
SSID ssj0001268
Score 2.673667
Snippet We propose how to create and manipulate one-way nonclassical light via photon blockade in rotating nonlinear devices. We refer to this effect as nonreciprocal...
SourceID pubmed
SourceType Index Database
StartPage 153601
Title Nonreciprocal Photon Blockade
URI https://www.ncbi.nlm.nih.gov/pubmed/30362805
Volume 121
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5OUfYi3q-TPvja2TZt2j5OUYawMceEvY3cikW3DjYU_PWeJO26m3h5CSGhIcmXnnNyku8EoWvQQOp4jds-dbAN-w1pRwmGhEQBlw5YIFKxkVtt0nz2H_tBv3xtVLNLpqzOP9fySv6DKpQBrool-wdkZ41CAeQBX0gBYUh_hXE7G6ngFEoJwUx3XjIVI-MW1NMrFQtXfDoFGjlT5U2TeCYlprnXuFuulVYKWiz7SLn2MDcEHc7u7qTUHNek0n6C_MyfnBnWun6rI5t3J7g6tmt-kVkaEeiEsR26hto5k5GGxlwshmBO5IHIJMYfsSqNHRUVQg2xK98VPUnFsqivfgCzOh5qjLRCjTQR-4fapSjZRVUFVWC_oB5AVV6bauFrI1HODocu3azvUBXtFI0sbTG0qdHbQ7v5HsFqGMD30YYcHaBtg-HkENUWYLcM7FYB-xHqPdz37pp2_sqFzTGOp3biEjB6WSwxCXCIeZiEnhcKX4CpG8auzyThBFNGJQ8oF35MwUpNiEMdQXgkvWO0OcpG8hRZLBLcIQxjCVZlQFisYh9KT8TSpRFzxRk6McMajE0kk0Ex4PNvay5QtVwll2grgV9H1sAOm7IrPclf63Mu2g
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonreciprocal+Photon+Blockade&rft.jtitle=Physical+review+letters&rft.au=Huang%2C+Ran&rft.au=Miranowicz%2C+Adam&rft.au=Liao%2C+Jie-Qiao&rft.au=Nori%2C+Franco&rft.date=2018-10-12&rft.eissn=1079-7114&rft.volume=121&rft.issue=15&rft.spage=153601&rft_id=info:doi/10.1103%2FPhysRevLett.121.153601&rft_id=info%3Apmid%2F30362805&rft_id=info%3Apmid%2F30362805&rft.externalDocID=30362805