An Extended Complementary Filter for Full-Body MARG Orientation Estimation

Inertial sensing suites now permeate all forms of smart automation, yet a plateau exists in the real-world derivation of global orientation. Magnetic field fluctuations and inefficient sensor fusion still inhibit deployment. In this article, we introduce a new algorithm, an extended complementary fi...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ASME transactions on mechatronics Vol. 25; no. 4; pp. 2054 - 2064
Main Authors Madgwick, Sebastian O. H., Wilson, Samuel, Turk, Ruth, Burridge, Jane, Kapatos, Christos, Vaidyanathan, Ravi
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Inertial sensing suites now permeate all forms of smart automation, yet a plateau exists in the real-world derivation of global orientation. Magnetic field fluctuations and inefficient sensor fusion still inhibit deployment. In this article, we introduce a new algorithm, an extended complementary filter (ECF), to derive 3-D rigid body orientation from inertial sensing suites addressing these challenges. The ECF combines computational efficiency of classic complementary filters with improved accuracy compared to popular optimization filters. We present a complete formulation of the algorithm, including an extension to address the challenge of orientation accuracy in the presence of fluctuating magnetic fields. Performance is tested under a variety of conditions and benchmarked against the commonly used gradient decent inertial sensor fusion algorithm. Results demonstrate improved efficiency, with the ECF achieving convergence 30% faster than standard alternatives. We further demonstrate an improved robustness to sources of magnetic interference in pitch and roll and to fast changes of orientation in the yaw direction. The ECF has been implemented at the core of a wearable rehabilitation system tracking movement of stroke patients for home telehealth. The ECF and accompanying magnetic disturbance rejection algorithm enables previously unachievable real-time patient movement feedback in the form of a full virtual human (avatar), even in the presence of magnetic disturbance. Algorithm efficiency and accuracy have also spawned an entire commercial product line released by the company x-io. We believe the ECF and accompanying magnetic disturbance routines are key enablers for future widespread use of wearable systems with the capacity for global orientation tracking.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2020.2992296