Enabling Higher Order Lamb Wave Acoustic Devices With Complementarily Oriented Piezoelectric Thin Films

In this work, we present a new paradigm for enabling gigahertz higher-order Lamb wave acoustic devices using complementarily oriented piezoelectric (COP) thin films. Acoustic characteristics are first theoretically explored with COP lithium niobate (LiNbO 3 ) thin films, showing their excellent freq...

Full description

Saved in:
Bibliographic Details
Published inJournal of microelectromechanical systems Vol. 29; no. 5; pp. 1332 - 1346
Main Authors Lu, Ruochen, Yang, Yansong, Link, Steffen, Gong, Songbin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, we present a new paradigm for enabling gigahertz higher-order Lamb wave acoustic devices using complementarily oriented piezoelectric (COP) thin films. Acoustic characteristics are first theoretically explored with COP lithium niobate (LiNbO 3 ) thin films, showing their excellent frequency scalability, low loss, and high electromechanical coupling (<inline-formula> <tex-math notation="LaTeX">k^{2} </tex-math></inline-formula>). Acoustic resonators and delay lines are then designed and implemented, targeting efficient excitation of higher-order Lamb waves with record-breaking low loss. The fabricated resonator shows a <inline-formula> <tex-math notation="LaTeX">2^{\mathbf {nd}} </tex-math></inline-formula>-order symmetric (S2) resonance at 3.05 GHz with a high quality factor (<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>) of 657, and a large <inline-formula> <tex-math notation="LaTeX">k^{2} </tex-math></inline-formula> of 21.5% and a <inline-formula> <tex-math notation="LaTeX">6^{\mathbf {th}} </tex-math></inline-formula>-order symmetric (S6) resonance at 9.05 GHz with a high <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula> of 636 and a <inline-formula> <tex-math notation="LaTeX">k^{2} </tex-math></inline-formula> of 3.71%, both among the highest demonstrated for higher-order Lamb wave devices. The delay lines show an average insertion loss (IL) of 7.5 dB and the lowest reported propagation loss of 0.014 dB/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> at 4.4 GHz for S2. Notable acoustic passbands up to 15.1 GHz are identified. Upon further optimizations, the proposed COP platform can lead to gigahertz low-loss wideband acoustic components. [2020-0127]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1057-7157
1941-0158
DOI:10.1109/JMEMS.2020.3007590