Impact of the COVID-19 outbreak on urban air, Land surface temperature and air pollution in cold climate zones
The objective of this study was to analyze air pollution and thermal environment in Turkey's cold region before, during, and after COVID-19 in 2019, 2020 and 2021. The CO, NO2, O3, PM10 and SO2 data from the state air quality stations, as well as ground air temperature data from six weather sta...
Saved in:
Published in | Environmental research Vol. 237; p. 116887 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The objective of this study was to analyze air pollution and thermal environment in Turkey's cold region before, during, and after COVID-19 in 2019, 2020 and 2021. The CO, NO2, O3, PM10 and SO2 data from the state air quality stations, as well as ground air temperature data from six weather stations, and land satellite images from the USGS website using ArcGIS 10.4.1 software were collected in January, March, April and August of 2019, 2020 an 2021. In order to evaluate the impact of COVID-19 measures and restrictions on cold region cities, air pollution indicators, land surface temperature and air temperature as well as statistical data were analyzed. The results indicated that the CO, NO2, PM10 and SO2 emissions decreased by 14.9%, 14.3%, 47.1% and 28.5%, but O3 increased by 16.9%, respectively, during the COVID-19 lockdown in 2020 as compared to these of the pre-COVID-19 levels in 2019. A positive correlation between air temperature and O3 in 2019 (r2 = 0.80), and in 2020 and 2021 (r2 = 0.64) was obtained. Air temperature in 2020 and 2021 decreased due to lockdowns and quarantine measures that led to lower O3 emissions as compared to 2019. Negative correlations were also found between air temperature and NO2 (r2 = 0.60) and SO2 (r2 = 0.5). There was no correlation between air temperature and PM10. During the COVID-19 lockdown and intense restrictions in April 2020, the average LST and air temperature values dropped by 14.7 °C and 1.6 °C respectively, compared to April 2019. These findings may be beneficial for future urban planning, particularly in cold regions.
•Thermal environment and air pollution in a cold climate were studied during COVID19•O3 emissions increased by an average of 16.9% during the lockdown period•CO, NO2, PM10, and SO2 dropped by 14.9, 14.3, 47.1 and 28.5% during the lockdown•In 2020, LST decreased by 14.7 °C and air temperature by 1.6 °C compared to 2019•High levels of pollution gases are emitted from dense areas in the city center |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0013-9351 1096-0953 |
DOI: | 10.1016/j.envres.2023.116887 |