A Topological Investigation of Power Flow
This paper combines the fundamentals of an electrical grid, such as flow allocation according to Kirchhoff's laws and the effect of transmission line reactances with spectral graph theory, and expresses the linearized power flow behaviour in slack-bus independent weighted graph matrices to asse...
Saved in:
Published in | IEEE systems journal Vol. 12; no. 3; pp. 2524 - 2532 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper combines the fundamentals of an electrical grid, such as flow allocation according to Kirchhoff's laws and the effect of transmission line reactances with spectral graph theory, and expresses the linearized power flow behaviour in slack-bus independent weighted graph matrices to assess the relation between the topological structure and the physical behaviour of a power grid. Based on the pseudoinverse of the weighted network Laplacian, the paper further analytically calculates the effective resistance (Thevenin) matrix and the sensitivities of active power flows to the changes in network topology by means of transmission line removal and addition. Numerical results for the IEEE 118-bus power system are demonstrated to identify the critical components to cascading failures, node isolation, and Braess' paradox in a power grid. |
---|---|
ISSN: | 1932-8184 1937-9234 |
DOI: | 10.1109/JSYST.2016.2573851 |