A cortex-like learning machine for temporal hierarchical pattern clustering, detection, and recognition

A learning machine, called a clustering interpreting probabilistic associative memory (CIPAM), is proposed. CIPAM consists of a clusterer and an interpreter. The clusterer is a recurrent hierarchical neural network of unsupervised processing units (UPUs). The interpreter is a number of supervised pr...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 78; no. 1; pp. 89 - 103
Main Author Lo, James Ting-Ho
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.02.2012
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2011.04.046

Cover

More Information
Summary:A learning machine, called a clustering interpreting probabilistic associative memory (CIPAM), is proposed. CIPAM consists of a clusterer and an interpreter. The clusterer is a recurrent hierarchical neural network of unsupervised processing units (UPUs). The interpreter is a number of supervised processing units (SPUs) that branch out from the clusterer. Each processing unit (PU), UPU or SPU, comprises “dendritic encoders” for encoding inputs to the PU, “synapses” for storing resultant codes, a “nonspiking neuron” for generating inhibitory graded signals to modulate neighboring spiking neurons, “spiking neurons” for computing the subjective probability distribution (SPD) or the membership function, in the sense of fuzzy logic, of the label of said inputs to the PU and generating spike trains with the SPD or membership function as the firing rates, and a masking matrix for maximizing generalization. While UPUs employ unsupervised covariance learning mechanisms, SPUs employ supervised ones. They both also have unsupervised accumulation learning mechanisms. The clusterer of CIPAM clusters temporal and spatial data. The interpreter interprets the resultant clusters, effecting detection and recognition of temporal and hierarchical causes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2011.04.046