Field emission of electrons by carbon nanotube twist-yarns
Field emission with high current density at low operating voltage was found for the yarns obtained by solid state spinning process from forest of vertically aligned multiwall carbon nanotubes. The nanotube forest was produced catalytically by CVD method. It is found that only a small fraction of car...
Saved in:
Published in | Applied physics. A, Materials science & processing Vol. 88; no. 4; pp. 593 - 600 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer Nature B.V
01.09.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Field emission with high current density at low operating voltage was found for the yarns obtained by solid state spinning process from forest of vertically aligned multiwall carbon nanotubes. The nanotube forest was produced catalytically by CVD method. It is found that only a small fraction of carbon nanotubes from their total amount in the yarn yields to electron emission from its free end. This led to resistive heating of the emitting tubes and limiting of the emission current. The field emission microscopy pictures of MWNT yarn in free-end geometry appears to be very different from that of the conventional non-yarn carbon nanotube-based cathodes described in all previous studies. The FEM patterns are found to consist of the set of line and arc segments rather than a set of spots. Possible explanation of this effect is presented and discussed. The field emission from the lateral side of the yarns showed the self-enhanced currents increasing with operation time. We assume that this current increase may be due to untwisting and unwrapping of yarns resulted of application of the electric field. The lowest threshold field of about 0.7 V/μm was obtained after a few cycles of applied field increase. The prototypes of cathodoluminescent lamps and alphanumerical indicators based on MWNT twist-yarn cold cathodes are demonstrated. |
---|---|
ISSN: | 0947-8396 1432-0630 |
DOI: | 10.1007/s00339-007-4009-6 |