Markovian Robust Filtering and Control Applied to Rehabilitation Robotics

In this article, we deal with rehabilitation robot robust control in order to obtain best performance in the human-robot interaction. This class of system is subject to abrupt changes due to exogenous inputs and parameter variations caused, mainly, by the human dynamic behavior. In this context, Mar...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ASME transactions on mechatronics Vol. 26; no. 1; pp. 491 - 502
Main Authors Escalante, Felix M., Jutinico, Andres L., Jaimes, Jonathan C., Terra, Marco H., Siqueira, Adriano A. G.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, we deal with rehabilitation robot robust control in order to obtain best performance in the human-robot interaction. This class of system is subject to abrupt changes due to exogenous inputs and parameter variations caused, mainly, by the human dynamic behavior. In this context, Markovian jump linear systems offer suitable tools to model and control of this class of interactions. We propose force and impedance controllers based on robust recursive Markovian versions of the standard Kalman filter and the linear quadratic regulator. Different levels of the individual's actuation during the interaction with the robot define the Markov states. The measurement of electromyographic signals is used as jump parameter among Markov states. Also, a serious game is used to generate visual feedback, to promote active user participation, and to guide his movement routine. We compare our proposal with two other Markovian-based approaches and show the effectiveness our method through experiments with an ankle rehabilitation platform.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2020.3034245