Efficient Backside Power Delivery for High-Performance Computing Systems

In this work, we present a thin-profile, efficient power delivery approach, including a voltage regulator with in-package power inductor and backside power delivery network (PDN). To meet 1-<inline-formula> <tex-math notation="LaTeX">\mathrm {W}/{\mathrm {mm}}^{2} </tex-math...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on very large scale integration (VLSI) systems Vol. 30; no. 11; pp. 1748 - 1756
Main Authors Lin, Hesheng, van der Plas, Geert, Sun, Xiao, Velenis, Dimitrios, Catthoor, Francky, Lauwereins, Rudy, Beyne, Eric
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, we present a thin-profile, efficient power delivery approach, including a voltage regulator with in-package power inductor and backside power delivery network (PDN). To meet 1-<inline-formula> <tex-math notation="LaTeX">\mathrm {W}/{\mathrm {mm}}^{2} </tex-math></inline-formula> power-density target for high-performance computing (HPC) systems, a 25-high-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-factor (300 MHz), 150-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>-thick, in-molding power inductor is provided for high-efficiency point-of-load (PoL) voltage regulation. Meanwhile, a novel analytical model for backside power delivery is developed for computer-aided-design (CAD) procedure to optimize the system efficiency. For the power flowing from bumps (57-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} V_{\mathrm {DD}} </tex-math></inline-formula>-bump pitch) and backside PDN to active devices, the area resistances contributed by backside PDN and the buried power rail (BPR) are 23% and 77%, respectively, if a 10-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>-horizontal-pitch nano- through-silicon via (<inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>TSV) is available. The resulting impact on power dissipation is within 1% so negligible. A higher ratio (0.5) buck converter with maintained efficiency is combined to better benefit the external interconnect. The overall power delivery efficiency <inline-formula> <tex-math notation="LaTeX">\eta \,\,=83 </tex-math></inline-formula>% can be obtained for 1-<inline-formula> <tex-math notation="LaTeX">\mathrm {W}/{\mathrm {mm}}^{2} </tex-math></inline-formula> power-density target. The power losses contributed by an air-core inductor, power switches, and PDN/BPR/redistribution layer (RDL) are 26%, 66%, and 8%, respectively.
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2022.3183904