Numerical Methods for Electromagnetic Modeling of Graphene: A Review

Graphene's remarkable electrical, mechanical, thermal, and chemical properties have made this the frontier of many other 2-D materials a focus of significant research interest in the last decade. Many theoretical studies of the physical mechanisms behind these properties have been followed by t...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on multiscale and multiphysics computational techniques Vol. 5; pp. 44 - 58
Main Authors Niu, Kaikun, Li, Ping, Huang, Zhixiang, Jiang, Li Jun, Bagci, Hakan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Graphene's remarkable electrical, mechanical, thermal, and chemical properties have made this the frontier of many other 2-D materials a focus of significant research interest in the last decade. Many theoretical studies of the physical mechanisms behind these properties have been followed by those investing the graphene's practical use in various fields of engineering. Electromagnetics, optics, and photonics are among these fields, where potential benefits of graphene in improving the device/system performance have been studied. These studies are often carried out using simulation tools. To this end, many numerical methods have been developed to characterize electromagnetic field/wave interactions on graphene sheets and graphene-based devices. In this article, most popular of these methods are reviewed and their advantages and disadvantages are discussed. Numerical examples are provided to demonstrate their applicability to real-life electromagnetic devices and systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2379-8815
2379-8815
DOI:10.1109/JMMCT.2020.2983336