Local Magnetic Field Design and Characterization for Independent Closed-Loop Control of Multiple Mobile Microrobots

We present a new localized magnetic field generating system consisting of microcoils in two different layers of a printed circuit board that can be used for the independent control of multiple magnetic microrobots. Such a system will allow for cooperative or parallel microassembly tasks with teams o...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ASME transactions on mechatronics Vol. 25; no. 2; pp. 526 - 534
Main Authors Johnson, Benjamin V., Chowdhury, Sagar, Cappelleri, David J.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a new localized magnetic field generating system consisting of microcoils in two different layers of a printed circuit board that can be used for the independent control of multiple magnetic microrobots. Such a system will allow for cooperative or parallel microassembly tasks with teams of magnetic microrobots. In this article, we have modeled and characterized the performance of the microcoils in the workspace by analyzing the effects of input current and substrate layer position. The interactions between the magnetic microrobots that affect their motion in the workspace was also studied. The local magnetic field generates sufficient forces to enable the closed-loop control of multiple microrobots in the workspace. A new microrobot design is then presented that enables orientation control of a magnetic microrobot when actuated by local magnetic fields. An overview of the design is presented first and then it is experimentally validated. Finally, sample micromanipulation tasks are demonstrated using the new microrobot design, showcasing its improved manipulation capabilities.
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2020.2969074