Excited state electron transfer precedes proton transfer following irradiation of the hydrogen-bonded single water complex of 7-azaindole with UV light

High resolution electronic spectra of the single water complex of 7-azaindole (7AIW) and of a deuterated analog (7AIW-d(3)) have been recorded in a molecular beam, both in the absence and presence of an applied electric field. The obtained data include the rotational constants of both complexes in t...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 135; no. 8; p. 084301
Main Authors Young, Justin W, Pratt, David W
Format Journal Article
LanguageEnglish
Published United States 28.08.2011
Online AccessGet more information

Cover

Loading…
More Information
Summary:High resolution electronic spectra of the single water complex of 7-azaindole (7AIW) and of a deuterated analog (7AIW-d(3)) have been recorded in a molecular beam, both in the absence and presence of an applied electric field. The obtained data include the rotational constants of both complexes in their ground (S(0)) and first excited (S(1)) electronic states, their S(1)-S(0) electronic transition moment and axis-tilting angles, and their permanent electric dipole moments (EDM's) in both electronic states. Analyses of these data show that the water molecule forms two hydrogen bonds with 7AI, a donor O-H···N(7) bond and an acceptor O···H-N(1) bond. The resulting structure has a small EDM in the S(0) state (μ = 0.54 D) but a greatly enhanced EDM in the S(1) state (μ = 3.97 D). We deduce from the EDM's of the component parts that 0.281 e(-) of charge is transferred from the acidic N(1)-H site to the basic N(7) site upon UV excitation of 7AIW, but that water-assisted proton transfer from N(1) to N(7) does not occur. A model of the resulting electrostatic interactions in the solute-solvent pair predicts a solvent-induced red-shift of 1260 cm(-1) which compares favorably to the experimental value of 1290 cm(-1).
ISSN:1089-7690
DOI:10.1063/1.3626408