Learning Person-specific Cognition from Facial Reactions for Automatic Personality Recognition
This paper proposes to recognise the true (self-reported) personality traits from the target subject's cognition simulated from facial reactions. This approach builds on the following two findings in cognitive science: (i) human cognition partially determines expressed behaviour and is directly...
Saved in:
Published in | IEEE transactions on affective computing Vol. 14; no. 4; pp. 1 - 18 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper proposes to recognise the true (self-reported) personality traits from the target subject's cognition simulated from facial reactions. This approach builds on the following two findings in cognitive science: (i) human cognition partially determines expressed behaviour and is directly linked to true personality traits; and (ii) in dyadic interactions, individuals' nonverbal behaviours are influenced by their conversational partner's behaviours. In this context, we hypothesise that during a dyadic interaction, a target subject's facial reactions are driven by two main factors: their internal (person-specific) cognitive process, and the externalised nonverbal behaviours of their conversational partner. Consequently, we propose to represent the target subject's (defined as the listener) person-specific cognition in the form of a person-specific CNN architecture that has unique architectural parameters and depth, which takes audio-visual non-verbal cues displayed by the conversational partner (defined as the speaker) as input, and is able to reproduce the target subject's facial reactions. Each person-specific CNN is explored by the Neural Architecture Search (NAS) and a novel adaptive loss function, which is then represented as a graph representation for recognising the target subject's true personality. Experimental results not only show that the produced graph representations are well associated with target subjects' personality traits in both human-human and human-machine interaction scenarios, and outperform the existing approaches with significant advantages, but also demonstrate that the proposed novel strategies help in learning more reliable personality representations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1949-3045 1949-3045 |
DOI: | 10.1109/TAFFC.2022.3230672 |