Latent Dynamical Variables Produce Signatures of Spatiotemporal Criticality in Large Biological Systems
Understanding the activity of large populations of neurons is difficult due to the combinatorial complexity of possible cell-cell interactions. To reduce the complexity, coarse graining had been previously applied to experimental neural recordings, which showed over two decades of apparent scaling i...
Saved in:
Published in | Physical review letters Vol. 126; no. 11; p. 118302 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
19.03.2021
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Understanding the activity of large populations of neurons is difficult due to the combinatorial complexity of possible cell-cell interactions. To reduce the complexity, coarse graining had been previously applied to experimental neural recordings, which showed over two decades of apparent scaling in free energy, activity variance, eigenvalue spectra, and correlation time, hinting that the mouse hippocampus operates in a critical regime. We model such data by simulating conditionally independent binary neurons coupled to a small number of long-timescale stochastic fields and then replicating the coarse-graining procedure and analysis. This reproduces the experimentally observed scalings, suggesting that they do not require fine-tuning of internal parameters, but will arise in any system, biological or not, where activity variables are coupled to latent dynamic stimuli. Parameter sweeps for our model suggest that emergence of scaling requires most of the cells in a population to couple to the latent stimuli, predicting that even the celebrated place cells must also respond to nonplace stimuli. |
---|---|
ISSN: | 1079-7114 |
DOI: | 10.1103/PhysRevLett.126.118302 |