Flat phase of quenched disordered membranes at three-loop order

We study quenched disordered polymerized membranes in their flat phase by means of a three-loop perturbative analysis performed in dimension D=4-ε. We derive the renormalization group equations at this order and solve them up to order ε^{3}. Our results confirm those obtained by Coquand et al. withi...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. E Vol. 106; no. 6-1; p. 064114
Main Authors Metayer, S, Mouhanna, D
Format Journal Article
LanguageEnglish
Published United States 01.12.2022
Online AccessGet more information

Cover

Loading…
More Information
Summary:We study quenched disordered polymerized membranes in their flat phase by means of a three-loop perturbative analysis performed in dimension D=4-ε. We derive the renormalization group equations at this order and solve them up to order ε^{3}. Our results confirm those obtained by Coquand et al. within a nonperturbative approach [Phys. Rev. E 97, 030102(R) (2018)PREHBM2470-004510.1103/PhysRevE.97.030102] predicting a finite-temperature, finite-disorder wrinkling transition and those obtained by Coquand and Mouhanna within a recent two-loop order approach [Phys. Rev. E 103, L031001 (2021)PREHBM2470-004510.1103/PhysRevE.103.L031001], while correcting some of the results obtained in this last reference. We compute the anomalous dimensions that characterize the scaling behavior at the various fixed points of the renormalization group flow diagram. They appear to be in strong agreement with those predicted within the nonperturbative context.
ISSN:2470-0053
DOI:10.1103/PhysRevE.106.064114